Gagliardo–Nirenberg–Sobolev inequalities in John domains
Annales Fennici Mathematici, Tome 49 (2024) no. 2, p. 773–794.

Voir la notice de l'article provenant de la source Journal.fi

We build up a Gagliardo–Nirenberg–Sobolev inequality in John domains and, conversely, under an extra separation property, we show that a bounded domain supporting such a Gagliardo–Nirenberg–Sobolev inequality should be a John domain.  
DOI : 10.54330/afm.154980
Keywords: Gagliardo–Nirenberg–Sobolev inequality, John domain, Boman chain condition, separation property

Zeming Wang 1 ; Dachun Yang 1 ; Yuan Zhou 1

1 Beijing Normal University, School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems (Ministry of Education of China)
@article{AFM_2024_49_2_a18,
     author = {Zeming Wang and Dachun Yang and Yuan Zhou},
     title = {Gagliardo{\textendash}Nirenberg{\textendash}Sobolev inequalities in {John} domains},
     journal = {Annales Fennici Mathematici},
     pages = {773{\textendash}794--773{\textendash}794},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2024},
     doi = {10.54330/afm.154980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.154980/}
}
TY  - JOUR
AU  - Zeming Wang
AU  - Dachun Yang
AU  - Yuan Zhou
TI  - Gagliardo–Nirenberg–Sobolev inequalities in John domains
JO  - Annales Fennici Mathematici
PY  - 2024
SP  - 773–794
EP  - 773–794
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.154980/
DO  - 10.54330/afm.154980
LA  - en
ID  - AFM_2024_49_2_a18
ER  - 
%0 Journal Article
%A Zeming Wang
%A Dachun Yang
%A Yuan Zhou
%T Gagliardo–Nirenberg–Sobolev inequalities in John domains
%J Annales Fennici Mathematici
%D 2024
%P 773–794-773–794
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.154980/
%R 10.54330/afm.154980
%G en
%F AFM_2024_49_2_a18
Zeming Wang; Dachun Yang; Yuan Zhou. Gagliardo–Nirenberg–Sobolev inequalities in John domains. Annales Fennici Mathematici, Tome 49 (2024) no. 2, p. 773–794. doi : 10.54330/afm.154980. http://geodesic.mathdoc.fr/articles/10.54330/afm.154980/

Cité par Sources :