Voir la notice de l'article provenant de la source Journal.fi
are arbitrary and $\varphi$ belongs to a certain class $\mathcal{W}_{0}$ of exponentially decreasing weights. Accordingly, the proofs require techniques adapted to such weights, like tent spaces, Carleson measures for $A^p_\varphi$-spaces, Kahane–Khintchine inequalities, and decompositions of the unit disc by $(\rho,r)$-lattices, which differ from the conventional decompositions into subsets with essentially constant hyperbolic radii.
Hicham Arroussi 1 ; Jari Taskinen 2 ; Cezhong Tong 3 ; Zixing Yuan 4
@article{AFM_2024_49_2_a16, author = {Hicham Arroussi and Jari Taskinen and Cezhong Tong and Zixing Yuan}, title = {Area operators on large {Bergman} spaces}, journal = {Annales Fennici Mathematici}, pages = {731{\textendash}749--731{\textendash}749}, publisher = {mathdoc}, volume = {49}, number = {2}, year = {2024}, doi = {10.54330/afm.153073}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.153073/} }
TY - JOUR AU - Hicham Arroussi AU - Jari Taskinen AU - Cezhong Tong AU - Zixing Yuan TI - Area operators on large Bergman spaces JO - Annales Fennici Mathematici PY - 2024 SP - 731–749 EP - 731–749 VL - 49 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.54330/afm.153073/ DO - 10.54330/afm.153073 LA - en ID - AFM_2024_49_2_a16 ER -
%0 Journal Article %A Hicham Arroussi %A Jari Taskinen %A Cezhong Tong %A Zixing Yuan %T Area operators on large Bergman spaces %J Annales Fennici Mathematici %D 2024 %P 731–749-731–749 %V 49 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.54330/afm.153073/ %R 10.54330/afm.153073 %G en %F AFM_2024_49_2_a16
Hicham Arroussi; Jari Taskinen; Cezhong Tong; Zixing Yuan. Area operators on large Bergman spaces. Annales Fennici Mathematici, Tome 49 (2024) no. 2, p. 731–749. doi : 10.54330/afm.153073. http://geodesic.mathdoc.fr/articles/10.54330/afm.153073/
Cité par Sources :