Area operators on large Bergman spaces
Annales Fennici Mathematici, Tome 49 (2024) no. 2, p. 731–749.

Voir la notice de l'article provenant de la source Journal.fi

We completely characterize those positive Borel measures $\mu$ on the open unit disk $\mathbb{D}$ for which the area operator $A_{\mu}\colon A^p_\varphi\rightarrow L^q(\mathbb{T})$ is bounded. Here, the indices $0 are arbitrary and $\varphi$ belongs to a certain class $\mathcal{W}_{0}$ of exponentially decreasing weights. Accordingly, the proofs require techniques adapted to such weights, like tent spaces, Carleson measures for $A^p_\varphi$-spaces, Kahane–Khintchine inequalities, and decompositions of the unit disc by $(\rho,r)$-lattices, which differ from the conventional decompositions into subsets with essentially constant hyperbolic radii.
DOI : 10.54330/afm.153073
Keywords: Bergman space, tent space, area operator

Hicham Arroussi 1 ; Jari Taskinen 2 ; Cezhong Tong 3 ; Zixing Yuan 4

1 University of Helsinki, Department of Mathematics and Statistics, and University of Reading, Department of Mathematics and Statistics
2 University of Helsinki, Department of Mathematics and Statistics
3 Hebei University of Technology, Institute of Mathematics
4 Wuhan University, School of Mathematics and Statistics
@article{AFM_2024_49_2_a16,
     author = {Hicham Arroussi and Jari Taskinen and Cezhong Tong and Zixing Yuan},
     title = {Area operators on large {Bergman} spaces},
     journal = {Annales Fennici Mathematici},
     pages = {731{\textendash}749--731{\textendash}749},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2024},
     doi = {10.54330/afm.153073},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.153073/}
}
TY  - JOUR
AU  - Hicham Arroussi
AU  - Jari Taskinen
AU  - Cezhong Tong
AU  - Zixing Yuan
TI  - Area operators on large Bergman spaces
JO  - Annales Fennici Mathematici
PY  - 2024
SP  - 731–749
EP  - 731–749
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.153073/
DO  - 10.54330/afm.153073
LA  - en
ID  - AFM_2024_49_2_a16
ER  - 
%0 Journal Article
%A Hicham Arroussi
%A Jari Taskinen
%A Cezhong Tong
%A Zixing Yuan
%T Area operators on large Bergman spaces
%J Annales Fennici Mathematici
%D 2024
%P 731–749-731–749
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.153073/
%R 10.54330/afm.153073
%G en
%F AFM_2024_49_2_a16
Hicham Arroussi; Jari Taskinen; Cezhong Tong; Zixing Yuan. Area operators on large Bergman spaces. Annales Fennici Mathematici, Tome 49 (2024) no. 2, p. 731–749. doi : 10.54330/afm.153073. http://geodesic.mathdoc.fr/articles/10.54330/afm.153073/

Cité par Sources :