Ergodicity in the dynamics of holomorphic correspondences
Annales Fennici Mathematici, Tome 49 (2024) no. 2, p. 695–712.

Voir la notice de l'article provenant de la source Journal.fi

This paper studies ergodic properties of certain measures arising in the dynamics of holomorphic correspondences. These measures, in general, are not invariant in the classical sense of ergodic theory. We define a notion of ergodicity, and prove a version of Birkhoff's ergodic theorem in this setting. We also show the existence of ergodic measures when a holomorphic correspondence is defined on a compact complex manifold. Lastly, we give an explicit class of dynamically interesting measures that are ergodic as in our definition.
DOI : 10.54330/afm.152565
Keywords: Correspondences, ergodicity, invariant measures, equidistribution

Mayuresh Londhe 1

1 Indiana University, Department of Mathematics
@article{AFM_2024_49_2_a14,
     author = {Mayuresh Londhe},
     title = {Ergodicity in the dynamics of holomorphic correspondences},
     journal = {Annales Fennici Mathematici},
     pages = {695{\textendash}712--695{\textendash}712},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2024},
     doi = {10.54330/afm.152565},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.152565/}
}
TY  - JOUR
AU  - Mayuresh Londhe
TI  - Ergodicity in the dynamics of holomorphic correspondences
JO  - Annales Fennici Mathematici
PY  - 2024
SP  - 695–712
EP  - 695–712
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.152565/
DO  - 10.54330/afm.152565
LA  - en
ID  - AFM_2024_49_2_a14
ER  - 
%0 Journal Article
%A Mayuresh Londhe
%T Ergodicity in the dynamics of holomorphic correspondences
%J Annales Fennici Mathematici
%D 2024
%P 695–712-695–712
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.152565/
%R 10.54330/afm.152565
%G en
%F AFM_2024_49_2_a14
Mayuresh Londhe. Ergodicity in the dynamics of holomorphic correspondences. Annales Fennici Mathematici, Tome 49 (2024) no. 2, p. 695–712. doi : 10.54330/afm.152565. http://geodesic.mathdoc.fr/articles/10.54330/afm.152565/

Cité par Sources :