BiLipschitz homogeneous hyperbolic nets
Annales Fennici Mathematici, Tome 49 (2024) no. 2, p. 685–694.

Voir la notice de l'article provenant de la source Journal.fi

We answer a question of Itai Benjamini by showing there is a $K< \infty$ so that for any $\epsilon >0$, there exist $\epsilon$-dense discrete sets in the hyperbolic disk that are homogeneous with respect to $K$-biLipschitz maps of the disk to itself. However, this is not true for $K$ close to $1$; in that case, every $K$-biLipschitz homogeneous discrete set must omit a disk of hyperbolic radius $\epsilon(K)>0$. For $K=1$, this is a consequence of the Margulis lemma for discrete groups of hyperbolic isometries.
DOI : 10.54330/afm.152404
Keywords: BiLipschitz maps, hyperbolic geometry, Margulis constant, homogeneous set, quadrilateral mesh

Christopher J. Bishop 1

1 Stony Brook University, Mathematics Department
@article{AFM_2024_49_2_a13,
     author = {Christopher J. Bishop},
     title = {BiLipschitz homogeneous hyperbolic nets},
     journal = {Annales Fennici Mathematici},
     pages = {685{\textendash}694--685{\textendash}694},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2024},
     doi = {10.54330/afm.152404},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.152404/}
}
TY  - JOUR
AU  - Christopher J. Bishop
TI  - BiLipschitz homogeneous hyperbolic nets
JO  - Annales Fennici Mathematici
PY  - 2024
SP  - 685–694
EP  - 685–694
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.152404/
DO  - 10.54330/afm.152404
LA  - en
ID  - AFM_2024_49_2_a13
ER  - 
%0 Journal Article
%A Christopher J. Bishop
%T BiLipschitz homogeneous hyperbolic nets
%J Annales Fennici Mathematici
%D 2024
%P 685–694-685–694
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.152404/
%R 10.54330/afm.152404
%G en
%F AFM_2024_49_2_a13
Christopher J. Bishop. BiLipschitz homogeneous hyperbolic nets. Annales Fennici Mathematici, Tome 49 (2024) no. 2, p. 685–694. doi : 10.54330/afm.152404. http://geodesic.mathdoc.fr/articles/10.54330/afm.152404/

Cité par Sources :