Exceptional set estimates for radial projections in R^n
Annales Fennici Mathematici, Tome 49 (2024) no. 2, p. 631–661.

Voir la notice de l'article provenant de la source Journal.fi

  We prove two conjectures in this paper. The first conjecture is by Lund, Pham and Thu: Given a Borel set $A\subset \mathbb{R}^n$ such that $\dim A\in (k,k+1]$ for some $k\in\{1,\dots,n-1\}$. For $0, we have   $\text{dim}(\{y\in \mathbb{R}^n \setminus A\mid \text{dim} (\pi_y(A)) < s\})\leq \max\{k+s -\dim A,0\}.$   The second conjecture is by Liu: Given a Borel set $A\subset \mathbb{R}^n$, then $\text{dim} (\{x\in \mathbb{R}^n \setminus A \mid \text{dim}(\pi_x(A))<\text{dim} A\}) \leq \lceil \text{dim} A\rceil.$  
DOI : 10.54330/afm.152156
Keywords: Radial projection, exceptional estimate

Paige Bright 1 ; Shengwen Gan 2

1 Massachusetts Institute of Technology, Department of Mathematics
2 University of Wisconsin-Madison, Department of Mathematics
@article{AFM_2024_49_2_a11,
     author = {Paige Bright and Shengwen Gan},
     title = {Exceptional set estimates for radial projections in {R^n}},
     journal = {Annales Fennici Mathematici},
     pages = {631{\textendash}661--631{\textendash}661},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2024},
     doi = {10.54330/afm.152156},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.152156/}
}
TY  - JOUR
AU  - Paige Bright
AU  - Shengwen Gan
TI  - Exceptional set estimates for radial projections in R^n
JO  - Annales Fennici Mathematici
PY  - 2024
SP  - 631–661
EP  - 631–661
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.152156/
DO  - 10.54330/afm.152156
LA  - en
ID  - AFM_2024_49_2_a11
ER  - 
%0 Journal Article
%A Paige Bright
%A Shengwen Gan
%T Exceptional set estimates for radial projections in R^n
%J Annales Fennici Mathematici
%D 2024
%P 631–661-631–661
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.152156/
%R 10.54330/afm.152156
%G en
%F AFM_2024_49_2_a11
Paige Bright; Shengwen Gan. Exceptional set estimates for radial projections in R^n. Annales Fennici Mathematici, Tome 49 (2024) no. 2, p. 631–661. doi : 10.54330/afm.152156. http://geodesic.mathdoc.fr/articles/10.54330/afm.152156/

Cité par Sources :