Functional equations in formal power series
Annales Fennici Mathematici, Tome 49 (2024) no. 2, p. 601–620.

Voir la notice de l'article provenant de la source Journal.fi

Let $k$ be an algebraically closed field of characteristic zero, and $k[[z]]$ the ring of formal power series over $k$. In this paper, we study equations in the semigroup $z^2k[[z]]$ with the semigroup operation being composition. We prove a number of general results about such equations and provide some applications. In particular, we answer a question of Horwitz and Rubel about decompositions of "even" formal power series. We also show that every right amenable subsemigroup of $z^2k[[z]]$ is conjugate to a subsemigroup of the semigroup of monomials.
DOI : 10.54330/afm.149373
Keywords: Functional equations, formal power series, Böttcher's equation, semigroup amenability

Fedor Pakovich 1

1 Ben Gurion University of the Negev, Department of Mathematics
@article{AFM_2024_49_2_a9,
     author = {Fedor Pakovich},
     title = {Functional equations in formal power series},
     journal = {Annales Fennici Mathematici},
     pages = {601{\textendash}620--601{\textendash}620},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2024},
     doi = {10.54330/afm.149373},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.149373/}
}
TY  - JOUR
AU  - Fedor Pakovich
TI  - Functional equations in formal power series
JO  - Annales Fennici Mathematici
PY  - 2024
SP  - 601–620
EP  - 601–620
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.149373/
DO  - 10.54330/afm.149373
LA  - en
ID  - AFM_2024_49_2_a9
ER  - 
%0 Journal Article
%A Fedor Pakovich
%T Functional equations in formal power series
%J Annales Fennici Mathematici
%D 2024
%P 601–620-601–620
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.149373/
%R 10.54330/afm.149373
%G en
%F AFM_2024_49_2_a9
Fedor Pakovich. Functional equations in formal power series. Annales Fennici Mathematici, Tome 49 (2024) no. 2, p. 601–620. doi : 10.54330/afm.149373. http://geodesic.mathdoc.fr/articles/10.54330/afm.149373/

Cité par Sources :