Weak limit of W^1,2 homeomorphisms in R^3 can have any degree
Annales Fennici Mathematici, Tome 49 (2024) no. 2, p. 547–560.

Voir la notice de l'article provenant de la source Journal.fi

In this paper for every $k\in\mathbb{Z}$ we construct a sequence of weakly converging homeomorphisms $h_m\colon B(0,10)\to\mathbb{R}^3$, $h_m\rightharpoonup h$ in $W^{1,2}(B(0,10))$, such that $h_m(x)=x$ on $\partial B(0,10)$ and for every $r\in(5/16,7/16)$ the degree of $h$ with respect to the ball $B(0,r)$ is equal to $k$ on a set of positive measure.  
DOI : 10.54330/afm.147887
Keywords: Limits of Sobolev homeomorphisms, topological degree

Ondřej Bouchala 1 ; Stanislav Hencl 2 ; Zheng Zhu 3

1 Czech Technical University in Prague, Faculty of Information Technology
2 Charles University, Department of Mathematical Analysis
3 Beihang University, School of Mathematical Sciences
@article{AFM_2024_49_2_a6,
     author = {Ond\v{r}ej Bouchala and Stanislav Hencl and Zheng Zhu},
     title = {Weak limit of {W^1,2} homeomorphisms in {R^3} can have any degree},
     journal = {Annales Fennici Mathematici},
     pages = {547{\textendash}560--547{\textendash}560},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2024},
     doi = {10.54330/afm.147887},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.147887/}
}
TY  - JOUR
AU  - Ondřej Bouchala
AU  - Stanislav Hencl
AU  - Zheng Zhu
TI  - Weak limit of W^1,2 homeomorphisms in R^3 can have any degree
JO  - Annales Fennici Mathematici
PY  - 2024
SP  - 547–560
EP  - 547–560
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.147887/
DO  - 10.54330/afm.147887
LA  - en
ID  - AFM_2024_49_2_a6
ER  - 
%0 Journal Article
%A Ondřej Bouchala
%A Stanislav Hencl
%A Zheng Zhu
%T Weak limit of W^1,2 homeomorphisms in R^3 can have any degree
%J Annales Fennici Mathematici
%D 2024
%P 547–560-547–560
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.147887/
%R 10.54330/afm.147887
%G en
%F AFM_2024_49_2_a6
Ondřej Bouchala; Stanislav Hencl; Zheng Zhu. Weak limit of W^1,2 homeomorphisms in R^3 can have any degree. Annales Fennici Mathematici, Tome 49 (2024) no. 2, p. 547–560. doi : 10.54330/afm.147887. http://geodesic.mathdoc.fr/articles/10.54330/afm.147887/

Cité par Sources :