Voir la notice de l'article provenant de la source Journal.fi
Ondřej Bouchala 1 ; Stanislav Hencl 2 ; Zheng Zhu 3
@article{AFM_2024_49_2_a6, author = {Ond\v{r}ej Bouchala and Stanislav Hencl and Zheng Zhu}, title = {Weak limit of {W^1,2} homeomorphisms in {R^3} can have any degree}, journal = {Annales Fennici Mathematici}, pages = {547{\textendash}560--547{\textendash}560}, publisher = {mathdoc}, volume = {49}, number = {2}, year = {2024}, doi = {10.54330/afm.147887}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.147887/} }
TY - JOUR AU - Ondřej Bouchala AU - Stanislav Hencl AU - Zheng Zhu TI - Weak limit of W^1,2 homeomorphisms in R^3 can have any degree JO - Annales Fennici Mathematici PY - 2024 SP - 547–560 EP - 547–560 VL - 49 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.54330/afm.147887/ DO - 10.54330/afm.147887 LA - en ID - AFM_2024_49_2_a6 ER -
%0 Journal Article %A Ondřej Bouchala %A Stanislav Hencl %A Zheng Zhu %T Weak limit of W^1,2 homeomorphisms in R^3 can have any degree %J Annales Fennici Mathematici %D 2024 %P 547–560-547–560 %V 49 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.54330/afm.147887/ %R 10.54330/afm.147887 %G en %F AFM_2024_49_2_a6
Ondřej Bouchala; Stanislav Hencl; Zheng Zhu. Weak limit of W^1,2 homeomorphisms in R^3 can have any degree. Annales Fennici Mathematici, Tome 49 (2024) no. 2, p. 547–560. doi : 10.54330/afm.147887. http://geodesic.mathdoc.fr/articles/10.54330/afm.147887/
Cité par Sources :