Strong barriers for weighted quasilinear equations
Annales Fennici Mathematici, Tome 49 (2024) no. 2, p. 529–545.

Voir la notice de l'article provenant de la source Journal.fi

In potential theory, use of barriers is one of the most important techniques. We construct strong barriers for weighted quasilinear elliptic operators. There are two applications: (i) solvability of Poisson-type equations with boundary singular data, and (ii) a geometric version of Hardy inequality. Our construction method can be applied to a general class of divergence form elliptic operators on domains with rough boundary.
DOI : 10.54330/afm.147579
Keywords: Potential theory, Hardy inequality, p-Laplacian, quasilinear elliptic equation, boundary value problem, boundary regularity

Takanobu Hara 1

1 Tohoku University, Graduate School of Science
@article{AFM_2024_49_2_a5,
     author = {Takanobu Hara},
     title = {Strong barriers for weighted quasilinear equations},
     journal = {Annales Fennici Mathematici},
     pages = {529{\textendash}545--529{\textendash}545},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2024},
     doi = {10.54330/afm.147579},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.147579/}
}
TY  - JOUR
AU  - Takanobu Hara
TI  - Strong barriers for weighted quasilinear equations
JO  - Annales Fennici Mathematici
PY  - 2024
SP  - 529–545
EP  - 529–545
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.147579/
DO  - 10.54330/afm.147579
LA  - en
ID  - AFM_2024_49_2_a5
ER  - 
%0 Journal Article
%A Takanobu Hara
%T Strong barriers for weighted quasilinear equations
%J Annales Fennici Mathematici
%D 2024
%P 529–545-529–545
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.147579/
%R 10.54330/afm.147579
%G en
%F AFM_2024_49_2_a5
Takanobu Hara. Strong barriers for weighted quasilinear equations. Annales Fennici Mathematici, Tome 49 (2024) no. 2, p. 529–545. doi : 10.54330/afm.147579. http://geodesic.mathdoc.fr/articles/10.54330/afm.147579/

Cité par Sources :