Further properties of accretive matrices
Annales Fennici Mathematici, Tome 49 (2024) no. 1, p. 387–404.

Voir la notice de l'article provenant de la source Journal.fi

To better understand the algebra $\mathcal{M}_n$ of all $n\times n$ complex matrices, we explore the class of accretive matrices. This class has received renowned attention in recent years due to its role in complementing those results known for positive definite matrices. Among many results, we present order-preserving results, Choi–Davis-type inequalities, mean-convex inequalities, sub-multiplicative results for the real part, and new bounds of the absolute value of accretive matrices. These results will be compared with the existing literature. In the end, we quickly pass through related entropy results for accretive matrices.
DOI : 10.54330/afm.146278
Keywords: Accretive matrix, operator monotone function, Choi–Davis inequality, mean of accretive matrices, operator matrix related to accretive matrices, entropy

Shigeru Furuichi 1 ; Hamid Reza Moradi 2 ; Mohammad Sababheh 3

1 Nihon University, College of Humanities and Sciences, Department of Information Science, and Saveetha School of Engineering, SIMATS, Department of Mathematics
2 Islamic Azad University, Mashhad Branch, Department of Mathematics
3 Princess Sumaya University for Technology, Department of Basic Sciences
@article{AFM_2024_49_1_a19,
     author = {Shigeru Furuichi and Hamid Reza Moradi and Mohammad Sababheh},
     title = {Further properties of accretive matrices},
     journal = {Annales Fennici Mathematici},
     pages = {387{\textendash}404--387{\textendash}404},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2024},
     doi = {10.54330/afm.146278},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.146278/}
}
TY  - JOUR
AU  - Shigeru Furuichi
AU  - Hamid Reza Moradi
AU  - Mohammad Sababheh
TI  - Further properties of accretive matrices
JO  - Annales Fennici Mathematici
PY  - 2024
SP  - 387–404
EP  - 387–404
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.146278/
DO  - 10.54330/afm.146278
LA  - en
ID  - AFM_2024_49_1_a19
ER  - 
%0 Journal Article
%A Shigeru Furuichi
%A Hamid Reza Moradi
%A Mohammad Sababheh
%T Further properties of accretive matrices
%J Annales Fennici Mathematici
%D 2024
%P 387–404-387–404
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.146278/
%R 10.54330/afm.146278
%G en
%F AFM_2024_49_1_a19
Shigeru Furuichi; Hamid Reza Moradi; Mohammad Sababheh. Further properties of accretive matrices. Annales Fennici Mathematici, Tome 49 (2024) no. 1, p. 387–404. doi : 10.54330/afm.146278. http://geodesic.mathdoc.fr/articles/10.54330/afm.146278/

Cité par Sources :