Frostman lemma revisited
Annales Fennici Mathematici, Tome 49 (2024) no. 1, p. 303–318.

Voir la notice de l'article provenant de la source Journal.fi

We study sharpness of various generalizations of Frostman's lemma. These generalizations provide better estimates for the lower Hausdorff dimension of measures. As a corollary, we prove that if a generalized anisotropic gradient $(\partial_1^{m_1} f, \partial_2^{m_2} f,\ldots, \partial_d^{m_d} f)$ of a function $f$ in $d$ variables is a measure of bounded variation, then this measure is absolutely continuous with respect to the Hausdorff $d-1$ dimensional measure.
DOI : 10.54330/afm.145356
Keywords: Hausdorff dimension, Frostman lemma, differentiable functions

Nikita Dobronravov 1

1 St. Petersburg State University, Department of Leonhard Euler International Mathematical Institute
@article{AFM_2024_49_1_a14,
     author = {Nikita Dobronravov},
     title = {Frostman lemma revisited},
     journal = {Annales Fennici Mathematici},
     pages = {303{\textendash}318--303{\textendash}318},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2024},
     doi = {10.54330/afm.145356},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.145356/}
}
TY  - JOUR
AU  - Nikita Dobronravov
TI  - Frostman lemma revisited
JO  - Annales Fennici Mathematici
PY  - 2024
SP  - 303–318
EP  - 303–318
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.145356/
DO  - 10.54330/afm.145356
LA  - en
ID  - AFM_2024_49_1_a14
ER  - 
%0 Journal Article
%A Nikita Dobronravov
%T Frostman lemma revisited
%J Annales Fennici Mathematici
%D 2024
%P 303–318-303–318
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.145356/
%R 10.54330/afm.145356
%G en
%F AFM_2024_49_1_a14
Nikita Dobronravov. Frostman lemma revisited. Annales Fennici Mathematici, Tome 49 (2024) no. 1, p. 303–318. doi : 10.54330/afm.145356. http://geodesic.mathdoc.fr/articles/10.54330/afm.145356/

Cité par Sources :