On the Hausdorff dimension of radial slices
Annales Fennici Mathematici, Tome 49 (2024) no. 1, p. 183–209.

Voir la notice de l'article provenant de la source Journal.fi

Let $t \in (1,2)$, and let $B \subset \mathbb{R}^{2}$ be a Borel set with $\dim_{\mathrm{H}} B > t$. I show that $\mathcal{H}^{1}(\{e \in S^{1} \colon \dim_{\mathrm{H}} (B \cap \ell_{x,e}) \geq t - 1\}) > 0$ for all $x \in \mathbb{R}^{2} \setminus E$, where $\dim_{\mathrm{H}} E \leq 2 - t$. This is the sharp bound for $\dim_{\mathrm{H}} E$. The main technical tool is an incidence inequality of the form $\mathcal{I}_{\delta}(\mu,\nu) \lesssim_{t} \delta \cdot \sqrt{I_{t}(\mu)I_{3 - t}(\nu)}$, $t \in (1,2)$, where $\mu$ is a Borel measure on $\mathbb{R}^{2}$, and $\nu$ is a Borel measure on the set of lines in $\mathbb{R}^{2}$, and $\mathcal{I}_{\delta}(\mu,\nu)$ measures the $\delta$-incidences between $\mu$ and the lines parametrised by $\nu$. This inequality can be viewed as a $\delta^{-\epsilon}$-free version of a recent incidence theorem due to Fu and Ren. The proof in this paper avoids the high-low method, and the induction-on-scales scheme responsible for the $\delta^{-\epsilon}$-factor in Fu and Ren's work. Instead, the inequality is deduced from the classical smoothing properties of the $X$-ray transform.  
DOI : 10.54330/afm.143959
Keywords: Incidences, radial projections, slicing

Tuomas Orponen 1

1 University of Jyväskylä, Department of Mathematics and Statistics
@article{AFM_2024_49_1_a9,
     author = {Tuomas Orponen},
     title = {On the {Hausdorff} dimension of radial slices},
     journal = {Annales Fennici Mathematici},
     pages = {183{\textendash}209--183{\textendash}209},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2024},
     doi = {10.54330/afm.143959},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.143959/}
}
TY  - JOUR
AU  - Tuomas Orponen
TI  - On the Hausdorff dimension of radial slices
JO  - Annales Fennici Mathematici
PY  - 2024
SP  - 183–209
EP  - 183–209
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.143959/
DO  - 10.54330/afm.143959
LA  - en
ID  - AFM_2024_49_1_a9
ER  - 
%0 Journal Article
%A Tuomas Orponen
%T On the Hausdorff dimension of radial slices
%J Annales Fennici Mathematici
%D 2024
%P 183–209-183–209
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.143959/
%R 10.54330/afm.143959
%G en
%F AFM_2024_49_1_a9
Tuomas Orponen. On the Hausdorff dimension of radial slices. Annales Fennici Mathematici, Tome 49 (2024) no. 1, p. 183–209. doi : 10.54330/afm.143959. http://geodesic.mathdoc.fr/articles/10.54330/afm.143959/

Cité par Sources :