Minimal surfaces and the new main inequality
Annales Fennici Mathematici, Tome 49 (2024) no. 1, p. 99–117.

Voir la notice de l'article provenant de la source Journal.fi

We establish the new main inequality as a minimizing criterion for minimal maps into products of $\mathbb{R}$-trees, and the infinitesimal new main inequality as a stability criterion for minimal maps to $\mathbb{R}^n$. Along the way, we develop a new perspective on destabilizing minimal surfaces in $\mathbb{R}^n$, and as a consequence we reprove the instability of some classical minimal surfaces; for example, the Enneper surface.  
DOI : 10.54330/afm.143716
Keywords: Minimal surfaces, quasiconformal maps, harmonic maps, real trees

Vladimir Marković 1 ; Nathaniel Sagman 2

1 University of Oxford, All Souls College
2 University of Luxembourg
@article{AFM_2024_49_1_a5,
     author = {Vladimir Markovi\'c and Nathaniel Sagman},
     title = {Minimal surfaces and the new main inequality},
     journal = {Annales Fennici Mathematici},
     pages = {99{\textendash}117--99{\textendash}117},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2024},
     doi = {10.54330/afm.143716},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.143716/}
}
TY  - JOUR
AU  - Vladimir Marković
AU  - Nathaniel Sagman
TI  - Minimal surfaces and the new main inequality
JO  - Annales Fennici Mathematici
PY  - 2024
SP  - 99–117
EP  - 99–117
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.143716/
DO  - 10.54330/afm.143716
LA  - en
ID  - AFM_2024_49_1_a5
ER  - 
%0 Journal Article
%A Vladimir Marković
%A Nathaniel Sagman
%T Minimal surfaces and the new main inequality
%J Annales Fennici Mathematici
%D 2024
%P 99–117-99–117
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.143716/
%R 10.54330/afm.143716
%G en
%F AFM_2024_49_1_a5
Vladimir Marković; Nathaniel Sagman. Minimal surfaces and the new main inequality. Annales Fennici Mathematici, Tome 49 (2024) no. 1, p. 99–117. doi : 10.54330/afm.143716. http://geodesic.mathdoc.fr/articles/10.54330/afm.143716/

Cité par Sources :