Exceptional projections of sets exhibiting almost dimension conservation
Annales Fennici Mathematici, Tome 49 (2024) no. 1, p. 65–79.

Voir la notice de l'article provenant de la source Journal.fi

We establish a packing dimension estimate on the exceptional sets of orthogonal projections of sets satisfying an almost dimension conservation law. In particular, the main result applies to homogeneous sets and to certain graph-directed sets. Connections are drawn to results of Rams and Orponen.  
DOI : 10.54330/afm.143289
Keywords: Orthogonal projections, exceptional sets, dimension conservation, packing dimension, homogeneous sets, graph-directed sets

Ryan E. G. Bushling 1

1 University of Washington, Department of Mathematics
@article{AFM_2024_49_1_a3,
     author = {Ryan E. G. Bushling},
     title = {Exceptional projections of sets exhibiting  almost dimension conservation},
     journal = {Annales Fennici Mathematici},
     pages = {65{\textendash}79--65{\textendash}79},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2024},
     doi = {10.54330/afm.143289},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.143289/}
}
TY  - JOUR
AU  - Ryan E. G. Bushling
TI  - Exceptional projections of sets exhibiting  almost dimension conservation
JO  - Annales Fennici Mathematici
PY  - 2024
SP  - 65–79
EP  - 65–79
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.143289/
DO  - 10.54330/afm.143289
LA  - en
ID  - AFM_2024_49_1_a3
ER  - 
%0 Journal Article
%A Ryan E. G. Bushling
%T Exceptional projections of sets exhibiting  almost dimension conservation
%J Annales Fennici Mathematici
%D 2024
%P 65–79-65–79
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.143289/
%R 10.54330/afm.143289
%G en
%F AFM_2024_49_1_a3
Ryan E. G. Bushling. Exceptional projections of sets exhibiting  almost dimension conservation. Annales Fennici Mathematici, Tome 49 (2024) no. 1, p. 65–79. doi : 10.54330/afm.143289. http://geodesic.mathdoc.fr/articles/10.54330/afm.143289/

Cité par Sources :