The range set of zero for harmonic mappings of the unit disk with sectorial boundary normalization
Annales Fennici Mathematici, Tome 49 (2024) no. 1, p. 49–63.

Voir la notice de l'article provenant de la source Journal.fi

Given a family $\mathcal F$ of all complex-valued functions in a domain $\Omega\subset\hat{\mathbb{C}}$, the authors introduce the range set $RS_{\mathcal F}(A)$ of a set $A\subset\Omega$ under the class in question, i.e. the set of all $w\in\Bbb C$ such that $w\in F(A)$ for a certain $F\in\mathcal F$. Let $T_1,T_2,T_3$ be closed arcs contained in the unit circle $\Bbb T$ of the same length $2\pi/3$ and covering $\Bbb T$. The paper deals with the range set $RS_{\mathcal F}(\{0\})$, where $\mathcal F$ is the class of all complex-valued harmonic functions $F$ of the unit disk $\Bbb D$ into itself satisfying the following sectorial condition: For each $k\in\{1,2,3\}$ and for almost every $z\in T_k$ the radial limit $F^*(z)$ of the function $F$ at the point $z$ belongs to the angular sector determined by the convex hull spanned by the origin and arc $T_k$. In 2014 the authors proved that for any $F\in\mathcal F$, $|F(z)|\le\frac{4}{3}-\frac{2}{\pi}\arctan\left(\frac{\sqrt{3}}{1+2|z|}\right), \quad z\in\Bbb D$,   by which $|F(0)|\le 2/3$. This implies that $RS_{\mathcal F}(\{0\})$ is a subset of the closed disk of radius 2/3 and centred at the origin. In the paper the range set $RS_{\mathcal F}(\{0\})$ is precisely determined.  
DOI : 10.54330/afm.143007
Keywords: Boundary normalization, harmonic mappings, Poisson integral, Schwarz Lemma

Dariusz Partyka 1 ; Józef Zając 2

1 The John Paul II Catholic University of Lublin, Department of Mathematical Analysis, and The University College of Applied Sciences in Chełm, Institute of Mathematics and Information Technology
2 The University College of Applied Sciences in Chełm, Institute of Mathematics and Information Technology
@article{AFM_2024_49_1_a2,
     author = {Dariusz Partyka and J\'ozef Zaj\k{a}c},
     title = {The range set of zero for harmonic mappings of the unit disk with sectorial boundary normalization},
     journal = {Annales Fennici Mathematici},
     pages = {49{\textendash}63--49{\textendash}63},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2024},
     doi = {10.54330/afm.143007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.143007/}
}
TY  - JOUR
AU  - Dariusz Partyka
AU  - Józef Zając
TI  - The range set of zero for harmonic mappings of the unit disk with sectorial boundary normalization
JO  - Annales Fennici Mathematici
PY  - 2024
SP  - 49–63
EP  - 49–63
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.143007/
DO  - 10.54330/afm.143007
LA  - en
ID  - AFM_2024_49_1_a2
ER  - 
%0 Journal Article
%A Dariusz Partyka
%A Józef Zając
%T The range set of zero for harmonic mappings of the unit disk with sectorial boundary normalization
%J Annales Fennici Mathematici
%D 2024
%P 49–63-49–63
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.143007/
%R 10.54330/afm.143007
%G en
%F AFM_2024_49_1_a2
Dariusz Partyka; Józef Zając. The range set of zero for harmonic mappings of the unit disk with sectorial boundary normalization. Annales Fennici Mathematici, Tome 49 (2024) no. 1, p. 49–63. doi : 10.54330/afm.143007. http://geodesic.mathdoc.fr/articles/10.54330/afm.143007/

Cité par Sources :