On a result of Bao-Qin Li concerning Dirichlet series and shared values
Annales Fennici Mathematici, Tome 48 (2023) no. 2, pp. 779-795.

Voir la notice de l'article provenant de la source Journal.fi

Li (2011) proved that if two L-functions $L_1$ and $L_2$ in the extended Selberg class ${\mathcal{S}}^{\sharp}$ satisfy the same functional equation with $a(1)=1$ and $L_1^{-1}(c_{j})=L_2^{-1}(c_{j})$ with $j\in\{1,2\}$ for two distinct finite complex numbers $c_{1}$ and $c_{2}$, then $L_{1}=L_{2}$. Later on, Gonek--Haan--Ki (2014) proved that if two L-functions $L_1$ and $L_2$ in the extended Selberg class ${\mathcal {S}}^{\sharp}$ have the positive degrees and $L_1^{-1}(c)=L_2^{-1}(c)$ for a finite non-zero complex number $c$, then $L_1=L_2$. This implies that if two L-functions $L_1$ and $L_2$ in the extended Selberg class ${\mathcal {S}}^{\sharp}$ have the positive degrees and $L_1^{-1}(c_j)=L_2^{-1}(c_j)$ with $j\in\{1,2\}$ for two distinct finite complex numbers $c_1$ and $c_2$, then $L_1=L_2$. In this paper, we prove that if two L-functions $L_1$ and $L_2$ in the extended Selberg class ${\mathcal{S}}^{\sharp}$ have the zero degrees and satisfy $L_1^{-1}(c_{j})=L_2^{-1}(c_{j})$ with $j\in\{1,2\}$ for two distinct finite complex numbers $c_{1}$ and $c_{2}$, and if $a_1(1)=a_2(1)$ or $\lim_{r\rightarrow+\infty}\frac{T(r,L_2)}{T(r,L_1)}=1$, then $L_{1}= L_{2}$. The main results obtained in this paper improve Theorem 1 from Li (2011) when the L-functions in the extended Selberg class ${\mathcal {S}}^{\sharp}$ have the zero degrees. Some examples are provided to show that the results obtained in this paper, in a sense, are best possible.
DOI : 10.54330/afm.141539
Keywords: Nevanlinna theory, meromorphic functions, Selberg class, extended Selberg class, shared values, uniqueness of L-functions

Xiao-Yan Fan 1 ; Xiao-Min Li 1 ; Hong-Xun Yi 2

1 Ocean University of China, Department of Mathematics
2 Shandong University, Department of Mathematics
@article{AFM_2023_48_2_a14,
     author = {Xiao-Yan Fan and Xiao-Min Li and Hong-Xun Yi},
     title = {On a result of {Bao-Qin} {Li} concerning {Dirichlet} series and shared values},
     journal = {Annales Fennici Mathematici},
     pages = {779--795},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2023},
     doi = {10.54330/afm.141539},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.141539/}
}
TY  - JOUR
AU  - Xiao-Yan Fan
AU  - Xiao-Min Li
AU  - Hong-Xun Yi
TI  - On a result of Bao-Qin Li concerning Dirichlet series and shared values
JO  - Annales Fennici Mathematici
PY  - 2023
SP  - 779
EP  - 795
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.141539/
DO  - 10.54330/afm.141539
LA  - en
ID  - AFM_2023_48_2_a14
ER  - 
%0 Journal Article
%A Xiao-Yan Fan
%A Xiao-Min Li
%A Hong-Xun Yi
%T On a result of Bao-Qin Li concerning Dirichlet series and shared values
%J Annales Fennici Mathematici
%D 2023
%P 779-795
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.141539/
%R 10.54330/afm.141539
%G en
%F AFM_2023_48_2_a14
Xiao-Yan Fan; Xiao-Min Li; Hong-Xun Yi. On a result of Bao-Qin Li concerning Dirichlet series and shared values. Annales Fennici Mathematici, Tome 48 (2023) no. 2, pp. 779-795. doi : 10.54330/afm.141539. http://geodesic.mathdoc.fr/articles/10.54330/afm.141539/

Cité par Sources :