Non-convexity of extremal length
Annales Fennici Mathematici, Tome 48 (2023) no. 2, pp. 691-702.

Voir la notice de l'article provenant de la source Journal.fi

With respect to every Riemannian metric, the Teichmüller metric, and the Thurston metric on Teichmüller space, we show that there exist measured foliations on surfaces whose extremal length functions are not convex. The construction uses harmonic maps to $\mathbb{R}$-trees and minimal surfaces in $\mathbb{R}^n$.
DOI : 10.54330/afm.138339
Keywords: Teichmüller theory for Riemann surfaces, minimal surfaces in differential geometry, surfaces with prescribed mean curvature, harmonic functions on Riemann surfaces

Nathaniel Sagman 1

1 University of Luxembourg
@article{AFM_2023_48_2_a10,
     author = {Nathaniel Sagman},
     title = {Non-convexity of extremal length},
     journal = {Annales Fennici Mathematici},
     pages = {691--702},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2023},
     doi = {10.54330/afm.138339},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.138339/}
}
TY  - JOUR
AU  - Nathaniel Sagman
TI  - Non-convexity of extremal length
JO  - Annales Fennici Mathematici
PY  - 2023
SP  - 691
EP  - 702
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.138339/
DO  - 10.54330/afm.138339
LA  - en
ID  - AFM_2023_48_2_a10
ER  - 
%0 Journal Article
%A Nathaniel Sagman
%T Non-convexity of extremal length
%J Annales Fennici Mathematici
%D 2023
%P 691-702
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.138339/
%R 10.54330/afm.138339
%G en
%F AFM_2023_48_2_a10
Nathaniel Sagman. Non-convexity of extremal length. Annales Fennici Mathematici, Tome 48 (2023) no. 2, pp. 691-702. doi : 10.54330/afm.138339. http://geodesic.mathdoc.fr/articles/10.54330/afm.138339/

Cité par Sources :