Inner functions as strongly extreme points: stability properties
Annales Fennici Mathematici, Tome 48 (2023) no. 2, pp. 681-690.

Voir la notice de l'article provenant de la source Journal.fi

Given a Banach space $\mathcal X$, let $x$ be a point in ball$(\mathcal X)$, the closed unit ball of $\mathcal X$. We say that $x$ is a strongly extreme point of ball$(\mathcal X)$ if it has the following property: for every $\varepsilon>0$ there is $\delta>0$ such that the inequalities $\|x\pm y\|<1+\delta$ imply, for $y\in\mathcal X$, that $\|y\|<\varepsilon$. We are concerned with certain subspaces of $H^\infty$, the space of bounded holomorphic functions on the disk, that arise upon imposing finitely many linear constraints and can be viewed as small perturbations of $H^\infty$. It is well known that the strongly extreme points of ball$(H^\infty)$ are precisely the inner functions, while the (usual) extreme points of this ball are the unit-norm functions $f\in H^\infty$ with $\log(1-|f|)$ non-integrable over the circle. Here we show that similar characterizations remain valid for our perturbed $H^\infty$-type spaces. Also, we investigate to what extent a non-inner function can differ from a strongly extreme point.
DOI : 10.54330/afm.137990
Keywords: Bounded analytic functions, inner functions, extreme points, strongly extreme points

Konstantin M. Dyakonov 1

1 Departament de Matemàtiques i Informàtica, IMUB, BGSMath, Universitat de Barcelona; and ICREA
@article{AFM_2023_48_2_a9,
     author = {Konstantin M. Dyakonov},
     title = {Inner functions as strongly extreme points: stability properties},
     journal = {Annales Fennici Mathematici},
     pages = {681--690},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2023},
     doi = {10.54330/afm.137990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.137990/}
}
TY  - JOUR
AU  - Konstantin M. Dyakonov
TI  - Inner functions as strongly extreme points: stability properties
JO  - Annales Fennici Mathematici
PY  - 2023
SP  - 681
EP  - 690
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.137990/
DO  - 10.54330/afm.137990
LA  - en
ID  - AFM_2023_48_2_a9
ER  - 
%0 Journal Article
%A Konstantin M. Dyakonov
%T Inner functions as strongly extreme points: stability properties
%J Annales Fennici Mathematici
%D 2023
%P 681-690
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.137990/
%R 10.54330/afm.137990
%G en
%F AFM_2023_48_2_a9
Konstantin M. Dyakonov. Inner functions as strongly extreme points: stability properties. Annales Fennici Mathematici, Tome 48 (2023) no. 2, pp. 681-690. doi : 10.54330/afm.137990. http://geodesic.mathdoc.fr/articles/10.54330/afm.137990/

Cité par Sources :