Dispersive estimates for the wave equation inside cylindrical convex domains
Annales Fennici Mathematici, Tome 48 (2023) no. 2, pp. 595-651.

Voir la notice de l'article provenant de la source Journal.fi

The dispersive and Strichartz estimates are essential for establishing well posedness results for nonlinear equations as well as long time behaviour of solutions to the equation. While in the boundary-less case these estimates are well understood, the case of boundary the situation can become much more difficult. In this work, we establish local in time dispersive estimates for solutions of the model case Dirichlet wave equation inside cylindrical convex domains $\Omega\subset\mathbb{R}^3$ with smooth boundary $\partial\Omega\neq \emptyset$. In this paper, we provide detailed proofs of the results established in [16, 17]. Let us recall that dispersive estimates are key ingredients to prove Strichartz estimates. Strichartz estimates for waves inside an arbitrary domain $\Omega$ have been proved by Blair, Smith, Sogge [4, 5]. Optimal estimates in strictly convex domains have been obtained in [12]. Our case of cylindrical domains is an extension of the result of [12] in the case when the nonnegative curvature radius depends on the incident angle and vanishes in some directions.
DOI : 10.54330/afm.137006
Keywords: Dispersive estimates, Strichartz estimates, wave equation, cylindrical convex domain

Len Meas 1

1 Royal University of Phnom Penh, Department of Mathematics
@article{AFM_2023_48_2_a7,
     author = {Len Meas},
     title = {Dispersive estimates for the wave equation inside cylindrical convex domains},
     journal = {Annales Fennici Mathematici},
     pages = {595--651},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2023},
     doi = {10.54330/afm.137006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.137006/}
}
TY  - JOUR
AU  - Len Meas
TI  - Dispersive estimates for the wave equation inside cylindrical convex domains
JO  - Annales Fennici Mathematici
PY  - 2023
SP  - 595
EP  - 651
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.137006/
DO  - 10.54330/afm.137006
LA  - en
ID  - AFM_2023_48_2_a7
ER  - 
%0 Journal Article
%A Len Meas
%T Dispersive estimates for the wave equation inside cylindrical convex domains
%J Annales Fennici Mathematici
%D 2023
%P 595-651
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.137006/
%R 10.54330/afm.137006
%G en
%F AFM_2023_48_2_a7
Len Meas. Dispersive estimates for the wave equation inside cylindrical convex domains. Annales Fennici Mathematici, Tome 48 (2023) no. 2, pp. 595-651. doi : 10.54330/afm.137006. http://geodesic.mathdoc.fr/articles/10.54330/afm.137006/

Cité par Sources :