Voir la notice de l'article provenant de la source Journal.fi
, and $\epsilon>0$ is a parameter. Under some suitable assumptions on the function $Q(x)$, we obtain that the equation above has positive multi-peak solutions concentrating at a critical point of $Q(x)$ for $\epsilon>0$ sufficiently small, by using the finite dimensional reduction method. Different from the local Schrödinger problem, here the corresponding limit problem is a system. Moreover, the nonlocal term brings some new difficulties which involve some technical and complicated estimates.
Hong Chen 1 ; Qiaoqiao Hua 1
@article{AFM_2023_48_2_a5, author = {Hong Chen and Qiaoqiao Hua}, title = {Solutions with multiple peaks for nonlinear {Kirchhoff} equations on {R^3}}, journal = {Annales Fennici Mathematici}, pages = {537--566}, publisher = {mathdoc}, volume = {48}, number = {2}, year = {2023}, doi = {10.54330/afm.131900}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.131900/} }
TY - JOUR AU - Hong Chen AU - Qiaoqiao Hua TI - Solutions with multiple peaks for nonlinear Kirchhoff equations on R^3 JO - Annales Fennici Mathematici PY - 2023 SP - 537 EP - 566 VL - 48 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.54330/afm.131900/ DO - 10.54330/afm.131900 LA - en ID - AFM_2023_48_2_a5 ER -
%0 Journal Article %A Hong Chen %A Qiaoqiao Hua %T Solutions with multiple peaks for nonlinear Kirchhoff equations on R^3 %J Annales Fennici Mathematici %D 2023 %P 537-566 %V 48 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.54330/afm.131900/ %R 10.54330/afm.131900 %G en %F AFM_2023_48_2_a5
Hong Chen; Qiaoqiao Hua. Solutions with multiple peaks for nonlinear Kirchhoff equations on R^3. Annales Fennici Mathematici, Tome 48 (2023) no. 2, pp. 537-566. doi : 10.54330/afm.131900. http://geodesic.mathdoc.fr/articles/10.54330/afm.131900/
Cité par Sources :