Boundedness properties of maximal operators on Lorentz spaces
Annales Fennici Mathematici, Tome 48 (2023) no. 2, pp. 515-535.

Voir la notice de l'article provenant de la source Journal.fi

We study mapping properties of the centered Hardy-Littlewood maximal operator $M$ acting on Lorentz spaces. Given $p \in (1,\infty)$ and a metric measure space $X = (X, \rho, \mu)$ we let $\Omega^p_{\rm HL}(X) \subset [0,1]^2$ be the set of all pairs $(\frac{1}{q},\frac{1}{r})$ such that $M$ is bounded from $L^{p,q}(X)$ to $L^{p,r}(X)$. Under mild assumptions on $\mu$, for each fixed $p$ all possible shapes of $\Omega^p_{\rm HL}(X)$ are characterized. Namely, we show that the boundary of $\Omega^p_{\rm HL}(X)$ either is empty or takes the form $\{ \delta \} \times [0, \lim_{u \rightarrow \delta} F(u)] \cup \{(u, F(u)) \colon u \in (\delta, 1] \}$, where $\delta \in [0,1]$ and $F \colon [\delta, 1] \rightarrow [0,1]$ is concave, nondecreasing, and satisfies $F(u) \leq u$. Conversely, for each such $F$ we find $X$ such that $M$ is bounded from $L^{p,q}(X)$ to $L^{p,r}(X)$ if and only if the point $(\frac{1}{q}, \frac{1}{r})$ lies on or under the graph of $F$, that is, $\frac{1}{q} \geq \delta$ and $\frac{1}{r} \leq F\big(\frac{1}{q}\big)$.
DOI : 10.54330/afm.131758
Keywords: Centered Hardy-Littlewood maximal operator, Lorentz space, nondoubling metric measure space

Dariusz Kosz 1

1 Basque Center for Applied Mathematics, and Wrocław University of Science and Technology
@article{AFM_2023_48_2_a4,
     author = {Dariusz Kosz},
     title = {Boundedness properties of maximal operators on {Lorentz} spaces},
     journal = {Annales Fennici Mathematici},
     pages = {515--535},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2023},
     doi = {10.54330/afm.131758},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.131758/}
}
TY  - JOUR
AU  - Dariusz Kosz
TI  - Boundedness properties of maximal operators on Lorentz spaces
JO  - Annales Fennici Mathematici
PY  - 2023
SP  - 515
EP  - 535
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.131758/
DO  - 10.54330/afm.131758
LA  - en
ID  - AFM_2023_48_2_a4
ER  - 
%0 Journal Article
%A Dariusz Kosz
%T Boundedness properties of maximal operators on Lorentz spaces
%J Annales Fennici Mathematici
%D 2023
%P 515-535
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.131758/
%R 10.54330/afm.131758
%G en
%F AFM_2023_48_2_a4
Dariusz Kosz. Boundedness properties of maximal operators on Lorentz spaces. Annales Fennici Mathematici, Tome 48 (2023) no. 2, pp. 515-535. doi : 10.54330/afm.131758. http://geodesic.mathdoc.fr/articles/10.54330/afm.131758/

Cité par Sources :