A large deviation principle for the Schramm–Loewner evolution in the uniform topology
Annales Fennici Mathematici, Tome 48 (2023) no. 1, pp. 389-410.

Voir la notice de l'article provenant de la source Journal.fi

We establish a large deviation principle for chordal SLE$_\kappa$ parametrized by capacity, as the parameter $\kappa \to 0+$, in the topology generated by uniform convergence on compact intervals of the positive real line. The rate function is shown to equal the Loewner energy of the curve. This strengthens the recent result of Peltola and Wang who obtained the analogous statement using the Hausdorff topology.
DOI : 10.54330/afm.130997
Keywords: Schramm–Loewner evolution, large deviation principle, Loewner energy

Vladislav Guskov 1

1 KTH Royal Institute of Technology, Department of Mathematics
@article{AFM_2023_48_1_a19,
     author = {Vladislav Guskov},
     title = {A large deviation principle for the {Schramm{\textendash}Loewner} evolution in the uniform topology},
     journal = {Annales Fennici Mathematici},
     pages = {389--410},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {2023},
     doi = {10.54330/afm.130997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.130997/}
}
TY  - JOUR
AU  - Vladislav Guskov
TI  - A large deviation principle for the Schramm–Loewner evolution in the uniform topology
JO  - Annales Fennici Mathematici
PY  - 2023
SP  - 389
EP  - 410
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.130997/
DO  - 10.54330/afm.130997
LA  - en
ID  - AFM_2023_48_1_a19
ER  - 
%0 Journal Article
%A Vladislav Guskov
%T A large deviation principle for the Schramm–Loewner evolution in the uniform topology
%J Annales Fennici Mathematici
%D 2023
%P 389-410
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.130997/
%R 10.54330/afm.130997
%G en
%F AFM_2023_48_1_a19
Vladislav Guskov. A large deviation principle for the Schramm–Loewner evolution in the uniform topology. Annales Fennici Mathematici, Tome 48 (2023) no. 1, pp. 389-410. doi : 10.54330/afm.130997. http://geodesic.mathdoc.fr/articles/10.54330/afm.130997/

Cité par Sources :