Nonlinear transport equations and quasiconformal maps
Annales Fennici Mathematici, Tome 48 (2023) no. 1, pp. 375-387.

Voir la notice de l'article provenant de la source Journal.fi

We prove existence of solutions to a nonlinear transport equation in the plane, for which the velocity field is obtained as the convolution of the classical Cauchy kernel with the unknown. Even though the initial datum is bounded and compactly supported, the velocity field may have unbounded divergence. The proof is based on the compactness property of quasiconformal mappings.  
DOI : 10.54330/afm.130026
Keywords: Quasiconformal map, transport equation, active scalar

Albert Clop 1 ; Banhirup Sengupta 2

1 Universitat de Barcelona, Department of Mathematics and Computer Science
2 Universitat Autònoma de Barcelona, Departament de Matemàtiques
@article{AFM_2023_48_1_a18,
     author = {Albert Clop and Banhirup Sengupta},
     title = {Nonlinear transport equations and quasiconformal maps},
     journal = {Annales Fennici Mathematici},
     pages = {375--387},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {2023},
     doi = {10.54330/afm.130026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.130026/}
}
TY  - JOUR
AU  - Albert Clop
AU  - Banhirup Sengupta
TI  - Nonlinear transport equations and quasiconformal maps
JO  - Annales Fennici Mathematici
PY  - 2023
SP  - 375
EP  - 387
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.130026/
DO  - 10.54330/afm.130026
LA  - en
ID  - AFM_2023_48_1_a18
ER  - 
%0 Journal Article
%A Albert Clop
%A Banhirup Sengupta
%T Nonlinear transport equations and quasiconformal maps
%J Annales Fennici Mathematici
%D 2023
%P 375-387
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.130026/
%R 10.54330/afm.130026
%G en
%F AFM_2023_48_1_a18
Albert Clop; Banhirup Sengupta. Nonlinear transport equations and quasiconformal maps. Annales Fennici Mathematici, Tome 48 (2023) no. 1, pp. 375-387. doi : 10.54330/afm.130026. http://geodesic.mathdoc.fr/articles/10.54330/afm.130026/

Cité par Sources :