Quasiconformal solutions to elliptic partial differential equations
Annales Fennici Mathematici, Tome 48 (2023) no. 1, pp. 361-374.

Voir la notice de l'article provenant de la source Journal.fi

In this paper, we assume that $G$ and $\Omega$ are two Jordan domains in $\mathbb{R}^n$ with $\mathcal{C}^2$ boundaries, where $n\ge 2$, and prove that every quasiconformal mapping $f\in\mathcal{W}^{2,1+\epsilon}_{\mathrm{loc}}$ of $G$ onto $\Omega$, satisfying the elliptic partial differential inequality $|L_ A[f]|\lesssim (\|Df\|^2+|g|)$, with $g\in\mathcal{L}^p(G)$, where $p>n$, is Lipschitz continuous. The result is sharp since for $p=n$, the mapping $f$ is not necessarily Lipschitz continuous. This extends several results for harmonic quasiconformal mappings.  
DOI : 10.54330/afm.129643
Keywords: Quasiconformal mappings, elliptic PDE, Lipschitz continuity

David Kalaj 1

1 University of Montenegro, Faculty of Natural Sciences and Mathematics
@article{AFM_2023_48_1_a17,
     author = {David Kalaj},
     title = {Quasiconformal solutions to elliptic partial differential equations},
     journal = {Annales Fennici Mathematici},
     pages = {361--374},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {2023},
     doi = {10.54330/afm.129643},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.129643/}
}
TY  - JOUR
AU  - David Kalaj
TI  - Quasiconformal solutions to elliptic partial differential equations
JO  - Annales Fennici Mathematici
PY  - 2023
SP  - 361
EP  - 374
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.129643/
DO  - 10.54330/afm.129643
LA  - en
ID  - AFM_2023_48_1_a17
ER  - 
%0 Journal Article
%A David Kalaj
%T Quasiconformal solutions to elliptic partial differential equations
%J Annales Fennici Mathematici
%D 2023
%P 361-374
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.129643/
%R 10.54330/afm.129643
%G en
%F AFM_2023_48_1_a17
David Kalaj. Quasiconformal solutions to elliptic partial differential equations. Annales Fennici Mathematici, Tome 48 (2023) no. 1, pp. 361-374. doi : 10.54330/afm.129643. http://geodesic.mathdoc.fr/articles/10.54330/afm.129643/

Cité par Sources :