Refined horoball counting and conformal measure for Kleinian group actions
Annales Fennici Mathematici, Tome 48 (2023) no. 1, pp. 325-344.

Voir la notice de l'article provenant de la source Journal.fi

Parabolic fixed points form a countable dense subset of the limit set of a non-elementary geometrically finite Kleinian group with at least one parabolic element. Given such a group, one may associate a standard set of pairwise disjoint horoballs, each tangent to the boundary at a parabolic fixed point. The diameter of such a horoball can be thought of as the 'inverse cost' of approximating an arbitrary point in the limit set by the associated parabolic point. A result of Stratmann and Velani allows one to count horoballs of a given size and, roughly speaking, for small $r>0$ there are $r^{-\delta}$ many horoballs of size approximately $r$, where $\delta$ is the Poincaré exponent of the group. We investigate localisations of this result, where we seek to count horoballs of size approximately $r$ inside a given ball $B(z,R)$. Roughly speaking, if $r \lesssim R^2$, then we obtain an analogue of the Stratmann-Velani result (normalised by the Patterson-Sullivan measure of $B(z,R)$). However, for larger values of $r$, the count depends in a subtle way on $z$.   Our counting results have several applications, especially to the geometry of conformal measures supported on the limit set. For example, we compute or estimate several 'fractal dimensions' of certain $s$-conformal measures for $s>\delta$ and use this to examine continuity properties of $s$-conformal measures at $s=\delta$.  
DOI : 10.54330/afm.129606
Keywords: Kleinian group, parabolic fixed point, Patterson-Sullivan measure, conformal measure, horoballs, global measure formula, Assouad spectrum, box dimension, Diophantine approximation

Jonathan M. Fraser 1 ; Liam Stuart 1

1 The University of St Andrews, School of Mathematics and Statistics
@article{AFM_2023_48_1_a15,
     author = {Jonathan M. Fraser and Liam Stuart},
     title = {Refined horoball counting and conformal  measure for {Kleinian} group actions},
     journal = {Annales Fennici Mathematici},
     pages = {325--344},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {2023},
     doi = {10.54330/afm.129606},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.129606/}
}
TY  - JOUR
AU  - Jonathan M. Fraser
AU  - Liam Stuart
TI  - Refined horoball counting and conformal  measure for Kleinian group actions
JO  - Annales Fennici Mathematici
PY  - 2023
SP  - 325
EP  - 344
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.129606/
DO  - 10.54330/afm.129606
LA  - en
ID  - AFM_2023_48_1_a15
ER  - 
%0 Journal Article
%A Jonathan M. Fraser
%A Liam Stuart
%T Refined horoball counting and conformal  measure for Kleinian group actions
%J Annales Fennici Mathematici
%D 2023
%P 325-344
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.129606/
%R 10.54330/afm.129606
%G en
%F AFM_2023_48_1_a15
Jonathan M. Fraser; Liam Stuart. Refined horoball counting and conformal  measure for Kleinian group actions. Annales Fennici Mathematici, Tome 48 (2023) no. 1, pp. 325-344. doi : 10.54330/afm.129606. http://geodesic.mathdoc.fr/articles/10.54330/afm.129606/

Cité par Sources :