Dimension estimates on circular (s,t)-Furstenberg sets
Annales Fennici Mathematici, Tome 48 (2023) no. 1, pp. 299-324.

Voir la notice de l'article provenant de la source Journal.fi

In this paper, we show that circular $(s,t)$-Furstenberg sets in $\mathbb R^2$ have Hausdorff dimension at least   $\max\{\tfrac{t}3+s,(2t+1)s-t\}$ for all $0.   This result extends the previous dimension estimates on circular Kakeya sets by Wolff.
DOI : 10.54330/afm.128073
Keywords: Furstenberg set, circular Furstenberg set, Hausdorff dimension

Jiayin Liu 1

1 University of Jyväskylä, Department of Mathematics and Statistics
@article{AFM_2023_48_1_a14,
     author = {Jiayin Liu},
     title = {Dimension estimates on circular {(s,t)-Furstenberg} sets},
     journal = {Annales Fennici Mathematici},
     pages = {299--324},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {2023},
     doi = {10.54330/afm.128073},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.128073/}
}
TY  - JOUR
AU  - Jiayin Liu
TI  - Dimension estimates on circular (s,t)-Furstenberg sets
JO  - Annales Fennici Mathematici
PY  - 2023
SP  - 299
EP  - 324
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.128073/
DO  - 10.54330/afm.128073
LA  - en
ID  - AFM_2023_48_1_a14
ER  - 
%0 Journal Article
%A Jiayin Liu
%T Dimension estimates on circular (s,t)-Furstenberg sets
%J Annales Fennici Mathematici
%D 2023
%P 299-324
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.128073/
%R 10.54330/afm.128073
%G en
%F AFM_2023_48_1_a14
Jiayin Liu. Dimension estimates on circular (s,t)-Furstenberg sets. Annales Fennici Mathematici, Tome 48 (2023) no. 1, pp. 299-324. doi : 10.54330/afm.128073. http://geodesic.mathdoc.fr/articles/10.54330/afm.128073/

Cité par Sources :