On the density of S-adic integers near some projective G-varieties
Annales Fennici Mathematici, Tome 48 (2023) no. 1, pp. 187-204.

Voir la notice de l'article provenant de la source Journal.fi

We provide some general conditions which ensure that a system of inequalities involving homogeneous polynomials with coefficients in a $S$-adic field has nontrivial $S$-integral solutions. The proofs are based on the strong approximation property for Zariski-dense subgroups and adelic geometry of numbers. We give some examples of applications for systems involving quadratic and linear forms.  
DOI : 10.54330/afm.127001
Keywords: Algebraic groups, projective variety, Adelic geometry, strong Approximation, quadratic forms

Youssef Lazar 1

1 Imam Mohammad ibn Saud Islamic University (IMSIU), College of Science, Department of Mathematics and Statistics
@article{AFM_2023_48_1_a9,
     author = {Youssef Lazar},
     title = {On the density of {S-adic} integers near some projective {G-varieties}},
     journal = {Annales Fennici Mathematici},
     pages = {187--204},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {2023},
     doi = {10.54330/afm.127001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.127001/}
}
TY  - JOUR
AU  - Youssef Lazar
TI  - On the density of S-adic integers near some projective G-varieties
JO  - Annales Fennici Mathematici
PY  - 2023
SP  - 187
EP  - 204
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.127001/
DO  - 10.54330/afm.127001
LA  - en
ID  - AFM_2023_48_1_a9
ER  - 
%0 Journal Article
%A Youssef Lazar
%T On the density of S-adic integers near some projective G-varieties
%J Annales Fennici Mathematici
%D 2023
%P 187-204
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.127001/
%R 10.54330/afm.127001
%G en
%F AFM_2023_48_1_a9
Youssef Lazar. On the density of S-adic integers near some projective G-varieties. Annales Fennici Mathematici, Tome 48 (2023) no. 1, pp. 187-204. doi : 10.54330/afm.127001. http://geodesic.mathdoc.fr/articles/10.54330/afm.127001/

Cité par Sources :