Additive properties of fractal sets on the parabola
Annales Fennici Mathematici, Tome 48 (2023) no. 1, pp. 113-139.

Voir la notice de l'article provenant de la source Journal.fi

  Let $0 \leq s \leq 1$, and let $\mathbb{P} := \{(t,t^{2}) \in \mathbb{R}^{2} \colon t \in [-1,1]\}$. If $K \subset \mathbb{P}$ is a closed set with $\operatorname{dim}_{\mathrm{H}} K = s$, it is not hard to see that $\operatorname{dim}_{\mathrm{H}} (K + K) \geq 2s$. The main corollary of the paper states that if $0 < s < 1$, then adding $K$ once more makes the sum slightly larger: $ \operatorname{dim}_{\mathrm{H}} (K + K + K) \geq 2s + \epsilon,$where $\epsilon = \epsilon(s) > 0$. This information is deduced from an $L^{6}$ bound for the Fourier transforms of Frostman measures on $\mathbb{P}$. If $0 < s < 1$, and $\mu$ is a Borel measure on $\mathbb{P}$ satisfying $\mu(B(x,r)) \leq r^{s}$ for all $x \in \mathbb{P}$ and $r > 0$, then there exists $\epsilon = \epsilon(s) > 0$ such that $\|\hat{\mu}\|_{L^{6}(B(R))}^{6} \leq R^{2 - (2s + \epsilon)}$ for all sufficiently large $R \geq 1$. The proof is based on a reduction to a $\delta$-discretised point-circle incidence problem, and eventually to the $(s,2s)$-Furstenberg set problem.  
DOI : 10.54330/afm.125826
Keywords: Fourier transforms, additive energies, Furstenberg sets, Frostman measures

Tuomas Orponen 1

1 University of Jyväskylä, Department of Mathematics and Statistics
@article{AFM_2023_48_1_a5,
     author = {Tuomas Orponen},
     title = {Additive properties of fractal sets on the parabola},
     journal = {Annales Fennici Mathematici},
     pages = {113--139},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {2023},
     doi = {10.54330/afm.125826},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.125826/}
}
TY  - JOUR
AU  - Tuomas Orponen
TI  - Additive properties of fractal sets on the parabola
JO  - Annales Fennici Mathematici
PY  - 2023
SP  - 113
EP  - 139
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.125826/
DO  - 10.54330/afm.125826
LA  - en
ID  - AFM_2023_48_1_a5
ER  - 
%0 Journal Article
%A Tuomas Orponen
%T Additive properties of fractal sets on the parabola
%J Annales Fennici Mathematici
%D 2023
%P 113-139
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.125826/
%R 10.54330/afm.125826
%G en
%F AFM_2023_48_1_a5
Tuomas Orponen. Additive properties of fractal sets on the parabola. Annales Fennici Mathematici, Tome 48 (2023) no. 1, pp. 113-139. doi : 10.54330/afm.125826. http://geodesic.mathdoc.fr/articles/10.54330/afm.125826/

Cité par Sources :