Conformal structure of autonomous Leray–Lions equations in the plane and linearisation by hodograph transform
Annales Fennici Mathematici, Tome 48 (2023) no. 1, pp. 43-66.

Voir la notice de l'article provenant de la source Journal.fi

We give sufficient conditions for when an autonomous elliptic Leray–Lions equation in the plane has a conformal structure. This allows the Leray–Lions equation to be linearised in a special form through the hodograph transform.  
DOI : 10.54330/afm.124732
Keywords: Elliptic partial differential equations, Beltrami equation, conformal structure

Erik Duse 1

1 KTH Royal Institute of Technology, Department of Mathematics and Statistics
@article{AFM_2023_48_1_a2,
     author = {Erik Duse},
     title = {Conformal structure of autonomous {Leray{\textendash}Lions} equations in the plane and linearisation by hodograph transform},
     journal = {Annales Fennici Mathematici},
     pages = {43--66},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {2023},
     doi = {10.54330/afm.124732},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.124732/}
}
TY  - JOUR
AU  - Erik Duse
TI  - Conformal structure of autonomous Leray–Lions equations in the plane and linearisation by hodograph transform
JO  - Annales Fennici Mathematici
PY  - 2023
SP  - 43
EP  - 66
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.124732/
DO  - 10.54330/afm.124732
LA  - en
ID  - AFM_2023_48_1_a2
ER  - 
%0 Journal Article
%A Erik Duse
%T Conformal structure of autonomous Leray–Lions equations in the plane and linearisation by hodograph transform
%J Annales Fennici Mathematici
%D 2023
%P 43-66
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.124732/
%R 10.54330/afm.124732
%G en
%F AFM_2023_48_1_a2
Erik Duse. Conformal structure of autonomous Leray–Lions equations in the plane and linearisation by hodograph transform. Annales Fennici Mathematici, Tome 48 (2023) no. 1, pp. 43-66. doi : 10.54330/afm.124732. http://geodesic.mathdoc.fr/articles/10.54330/afm.124732/

Cité par Sources :