Littlewood–Paley inequalities for fractional derivative on Bergman spaces
Annales Fennici Mathematici, Tome 47 (2022) no. 2, pp. 1109-1130.

Voir la notice de l'article provenant de la source Journal.fi

For any pair $(n,p)$, $n\in\mathbb{N}$ and $0, it has been recently proved by Peláez and Rättyä (2021) that a radial weight $\omega$ on the unit disc of the complex plane $\mathbb{D}$ satisfies the Littlewood-Paley equivalence $\int_{\mathbb{D}}|f(z)|^p\,\omega(z)\,dA(z)\asymp\int_\mathbb{D}|f^{(n)}(z)|^p(1-|z|)^{np}\omega(z)\,dA(z)+\sum_{j=0}^{n-1}|f^{(j)}(0)|^p,$ for any analytic function $f$ in $\mathbb{D}$, if and only if $\omega\in\mathcal{D}=\hat{\mathcal{D}} \cap \check{\mathcal{D}}$. A radial weight $\omega$ belongs to the class $\hat{\mathcal{D}}$ if $\sup_{0\le r<1} \frac{\int_r^1 \omega(s)\,ds}{\int_{\frac{1+r}{2}}^1\omega(s)\,ds}<\infty$, and $\omega \in \check{\mathcal{D}}$ if there exists $k>1$ such that $\inf_{0\le r<1} \frac{\int_{r}^1\omega(s)\,ds}{\int_{1-\frac{1-r}{k}}^1 \omega(s)\,ds}>1.$   In this paper we extend this result to the setting of fractional derivatives. Being precise, for an analytic function $f(z)=\sum_{n=0}^\infty \widehat{f}(n) z^n$ we consider the fractional derivative $D^{\mu}(f)(z)=\sum_{n=0}^{\infty} \frac{\widehat{f}(n)}{\mu_{2n+1}} z^n$ induced by a radial weight $\mu \in \mathcal{D}$ where $\mu_{2n+1}=\int_0^1 r^{2n+1}\mu(r)\,dr$. Then, we prove that for any $p\in (0,\infty)$, the Littlewood-Paley equivalence $\int_\mathbb{D} |f(z)|^p \omega(z)\,dA(z)\asymp \int_\mathbb{D}|D^{\mu}(f)(z)|^p\left[\int_{|z|}^1\mu(s)\,ds\right]^p\omega(z)\,dA(z)$holds for any analytic function $f$ in $\mathbb{D}$ if and only if $\omega\in\mathcal{D}$. We also prove that for any $p\in (0,\infty)$, the inequality $\int_\mathbb{D}|D^{\mu}(f)(z)|^p\left[\int_{|z|}^1\mu(s)\,ds\right]^p\omega(z)\,dA(z)\lesssim \int_\mathbb{D} |f(z)|^p \omega(z)\,dA(z)$ holds for any analytic function $f$ in $\mathbb D$ if and only if $\omega\in\hat D$.  
DOI : 10.54330/afm.121831
Keywords: Bergman space, fractional derivative, radial weight, Littlewood-Paley formula

José Ángel Peláez 1 ; Elena de la Rosa 1

1 Universidad de Málaga, Departamento de Análisis Matemático
@article{AFM_2022_47_2_a23,
     author = {Jos\'e \'Angel Pel\'aez and Elena de la Rosa},
     title = {Littlewood{\textendash}Paley inequalities for fractional derivative on {Bergman} spaces},
     journal = {Annales Fennici Mathematici},
     pages = {1109--1130},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2022},
     doi = {10.54330/afm.121831},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.121831/}
}
TY  - JOUR
AU  - José Ángel Peláez
AU  - Elena de la Rosa
TI  - Littlewood–Paley inequalities for fractional derivative on Bergman spaces
JO  - Annales Fennici Mathematici
PY  - 2022
SP  - 1109
EP  - 1130
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.121831/
DO  - 10.54330/afm.121831
LA  - en
ID  - AFM_2022_47_2_a23
ER  - 
%0 Journal Article
%A José Ángel Peláez
%A Elena de la Rosa
%T Littlewood–Paley inequalities for fractional derivative on Bergman spaces
%J Annales Fennici Mathematici
%D 2022
%P 1109-1130
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.121831/
%R 10.54330/afm.121831
%G en
%F AFM_2022_47_2_a23
José Ángel Peláez; Elena de la Rosa. Littlewood–Paley inequalities for fractional derivative on Bergman spaces. Annales Fennici Mathematici, Tome 47 (2022) no. 2, pp. 1109-1130. doi : 10.54330/afm.121831. http://geodesic.mathdoc.fr/articles/10.54330/afm.121831/

Cité par Sources :