Classification of metric measure spaces and their ends using p-harmonic functions
Annales Fennici Mathematici, Tome 47 (2022) no. 2, pp. 1025-1052.

Voir la notice de l'article provenant de la source Journal.fi

By seeing whether a Liouville type theorem holds for positive, bounded, and/or finite $p$-energy $p$-harmonic and $p$-quasiharmonic functions, we classify proper metric spaces equipped with a locally doubling measure supporting a local $p$-Poincaré inequality. Similar classifications have earlier been obtained for Riemann surfaces and Riemannian manifolds. We study the inclusions between these classes of metric measure spaces, and their relationship to the $p$-hyperbolicity of the metric space and its ends. In particular, we characterize spaces that carry nonconstant $p$-harmonic functions with finite $p$-energy as spaces having at least two well-separated $p$-hyperbolic sequences of sets towards infinity. We also show that every such space $X$ has a function $f \notin L^p(X) + \mathbf{R}$ with finite $p$-energy.
DOI : 10.54330/afm.120618
Keywords: Classification of metric measure spaces, doubling measure, end at infinity, finite p-energy, p-hyperbolic sequence, Liouville theorem, p-harmonic function, Poincaré inequality, p-parabolic, quasiharmonic function, quasiminimizer

Anders Björn 1 ; Jana Björn 1 ; Nageswari Shanmugalingam 2

1 Linköping University, Department of Mathematics
2 University of Cincinnati, Department of Mathematical Sciences
@article{AFM_2022_47_2_a19,
     author = {Anders Bj\"orn and Jana Bj\"orn and Nageswari Shanmugalingam},
     title = {Classification of metric measure spaces and their ends using p-harmonic functions},
     journal = {Annales Fennici Mathematici},
     pages = {1025--1052},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2022},
     doi = {10.54330/afm.120618},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.120618/}
}
TY  - JOUR
AU  - Anders Björn
AU  - Jana Björn
AU  - Nageswari Shanmugalingam
TI  - Classification of metric measure spaces and their ends using p-harmonic functions
JO  - Annales Fennici Mathematici
PY  - 2022
SP  - 1025
EP  - 1052
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.120618/
DO  - 10.54330/afm.120618
LA  - en
ID  - AFM_2022_47_2_a19
ER  - 
%0 Journal Article
%A Anders Björn
%A Jana Björn
%A Nageswari Shanmugalingam
%T Classification of metric measure spaces and their ends using p-harmonic functions
%J Annales Fennici Mathematici
%D 2022
%P 1025-1052
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.120618/
%R 10.54330/afm.120618
%G en
%F AFM_2022_47_2_a19
Anders Björn; Jana Björn; Nageswari Shanmugalingam. Classification of metric measure spaces and their ends using p-harmonic functions. Annales Fennici Mathematici, Tome 47 (2022) no. 2, pp. 1025-1052. doi : 10.54330/afm.120618. http://geodesic.mathdoc.fr/articles/10.54330/afm.120618/

Cité par Sources :