On existence of Becker extension
Annales Fennici Mathematici, Tome 47 (2022) no. 2, pp. 979-1005.

Voir la notice de l'article provenant de la source Journal.fi

A well-known theorem by Becker states that if a normalized univalent function $f$ in the unit disk $\mathbb{D}$ can be embedded as the initial element into a Loewner chain $(f_t)_{t\geqslant 0}$ such that the Herglotz function $p$ in the Loewner-Kufarev PDE $\partial f_t(z)/\partial f=zf'_t(z)p(z,t)$, $z\in\mathbb{D}$, a.e. $t\ge0$,satisfies $\big|(p(z,t)-1)/(p(z,t)+1)\big|\le k<1$, then $f$ admits a $k$-q.c. (= "$k$-quasiconformal") extension $F\colon\mathbb{C}\to\mathbb{C}$. The converse is not true. However, a simple argument shows that if $f$ has a $q$-q.c. extension with $q\in(0,1/6)$, then Becker's condition holds with $k:=6q$. In this paper we address the following problem: find the largest $k_*\in(0,1]$ with the property that for any $q\in(0,k_*)$ there exists $k_0(q)\in(0,1)$ such that every normalized univalent function $f\colon\mathbb D\to\mathbb C$ with a $q$-q.c. extension to $\mathbb C$ satisfies Becker's condition with $k:=k_0(q)$. We prove that $k_*\ge 1/3$.  
DOI : 10.54330/afm.120591
Keywords: Univalent function, boundary behavior, quasiconformal extension, Loewner chain, Becker extension

Pavel Gumenyuk 1

1 Politecnico di Milano, Department of Mathematics
@article{AFM_2022_47_2_a17,
     author = {Pavel Gumenyuk},
     title = {On existence of {Becker} extension},
     journal = {Annales Fennici Mathematici},
     pages = {979--1005},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2022},
     doi = {10.54330/afm.120591},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.120591/}
}
TY  - JOUR
AU  - Pavel Gumenyuk
TI  - On existence of Becker extension
JO  - Annales Fennici Mathematici
PY  - 2022
SP  - 979
EP  - 1005
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.120591/
DO  - 10.54330/afm.120591
LA  - en
ID  - AFM_2022_47_2_a17
ER  - 
%0 Journal Article
%A Pavel Gumenyuk
%T On existence of Becker extension
%J Annales Fennici Mathematici
%D 2022
%P 979-1005
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.120591/
%R 10.54330/afm.120591
%G en
%F AFM_2022_47_2_a17
Pavel Gumenyuk. On existence of Becker extension. Annales Fennici Mathematici, Tome 47 (2022) no. 2, pp. 979-1005. doi : 10.54330/afm.120591. http://geodesic.mathdoc.fr/articles/10.54330/afm.120591/

Cité par Sources :