Attainable forms of intermediate dimensions
Annales Fennici Mathematici, Tome 47 (2022) no. 2, pp. 939-960 Cet article a éte moissonné depuis la source Journal.fi

Voir la notice de l'article

The intermediate dimensions are a family of dimensions which interpolate between the Hausdorff and box dimensions of sets. We prove a necessary and sufficient condition for a given function $h(\theta)$ to be realized as the intermediate dimensions of a bounded subset of $\mathbb{R}^d$. This condition is a straightforward constraint on the Dini derivatives of $h(\theta)$, which we prove is sharp using a homogeneous Moran set construction.  
DOI : 10.54330/afm.120529
Keywords: Hausdorff dimension, box dimension, intermediate dimensions, Moran set

Amlan Banaji 1 ; Alex Rutar 1

1 University of St Andrews, Mathematical Institute
@article{AFM_2022_47_2_a15,
     author = {Amlan Banaji and Alex Rutar},
     title = {Attainable forms of intermediate dimensions},
     journal = {Annales Fennici Mathematici},
     pages = {939--960},
     year = {2022},
     volume = {47},
     number = {2},
     doi = {10.54330/afm.120529},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.120529/}
}
TY  - JOUR
AU  - Amlan Banaji
AU  - Alex Rutar
TI  - Attainable forms of intermediate dimensions
JO  - Annales Fennici Mathematici
PY  - 2022
SP  - 939
EP  - 960
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.120529/
DO  - 10.54330/afm.120529
LA  - en
ID  - AFM_2022_47_2_a15
ER  - 
%0 Journal Article
%A Amlan Banaji
%A Alex Rutar
%T Attainable forms of intermediate dimensions
%J Annales Fennici Mathematici
%D 2022
%P 939-960
%V 47
%N 2
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.120529/
%R 10.54330/afm.120529
%G en
%F AFM_2022_47_2_a15
Amlan Banaji; Alex Rutar. Attainable forms of intermediate dimensions. Annales Fennici Mathematici, Tome 47 (2022) no. 2, pp. 939-960. doi: 10.54330/afm.120529

Cité par Sources :