Attainable forms of intermediate dimensions
Annales Fennici Mathematici, Tome 47 (2022) no. 2, pp. 939-960
Cet article a éte moissonné depuis la source Journal.fi
The intermediate dimensions are a family of dimensions which interpolate between the Hausdorff and box dimensions of sets. We prove a necessary and sufficient condition for a given function $h(\theta)$ to be realized as the intermediate dimensions of a bounded subset of $\mathbb{R}^d$. This condition is a straightforward constraint on the Dini derivatives of $h(\theta)$, which we prove is sharp using a homogeneous Moran set construction.
Keywords:
Hausdorff dimension, box dimension, intermediate dimensions, Moran set
Affiliations des auteurs :
Amlan Banaji 1 ; Alex Rutar 1
@article{AFM_2022_47_2_a15,
author = {Amlan Banaji and Alex Rutar},
title = {Attainable forms of intermediate dimensions},
journal = {Annales Fennici Mathematici},
pages = {939--960},
year = {2022},
volume = {47},
number = {2},
doi = {10.54330/afm.120529},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.120529/}
}
Amlan Banaji; Alex Rutar. Attainable forms of intermediate dimensions. Annales Fennici Mathematici, Tome 47 (2022) no. 2, pp. 939-960. doi: 10.54330/afm.120529
Cité par Sources :