Voir la notice de l'article provenant de la source Journal.fi
or $\frac{14}{3}, $\mu>0$ and $\lambda\in\mathbb{R}$ appears as a Lagrange multiplier. In both cases for the range of $p$ and $q$, the Sobolev critical exponent $p=6$ is involved and the corresponding energy functional is unbounded from below on $S_c=\{ u \in H^{1}({\mathbb{R}^3})\colon \int_{{\mathbb{R}^3}} {{u}^2}=c^2 \}$. If $2and $\frac{14}{3}, we obtain a multiplicity result to the equation. If $2
or $\frac{14}{3}, we get a ground state solution to the equation. Furthermore, we derive several asymptotic results on the obtained normalized solutions. Our results extend the results of Soave (J. Differential Equations 2020 & J. Funct. Anal. 2020), which studied the nonlinear Schrödinger equations with combined nonlinearities, to the Kirchhoff equations. To deal with the special difficulties created by the nonlocal term $({\int_{{\mathbb{R}^3}} {\left| {\nabla u} \right|} ^2}) \Delta u$ appearing in Kirchhoff type equations, we develop a perturbed Pohozaev constraint approach and we find a way to get a clear picture of the profile of the fiber map via careful analysis. In the meantime, we need some subtle energy estimates under the $L^2$-constraint to recover compactness in the Sobolev critical case.
Gongbao Li 1 ; Xiao Luo 2 ; Tao Yang 3
@article{AFM_2022_47_2_a13, author = {Gongbao Li and Xiao Luo and Tao Yang}, title = {Normalized solutions to a class of {Kirchhoff} equations with {Sobolev} critical exponent}, journal = {Annales Fennici Mathematici}, pages = {895--925}, publisher = {mathdoc}, volume = {47}, number = {2}, year = {2022}, doi = {10.54330/afm.120247}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.120247/} }
TY - JOUR AU - Gongbao Li AU - Xiao Luo AU - Tao Yang TI - Normalized solutions to a class of Kirchhoff equations with Sobolev critical exponent JO - Annales Fennici Mathematici PY - 2022 SP - 895 EP - 925 VL - 47 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.54330/afm.120247/ DO - 10.54330/afm.120247 LA - en ID - AFM_2022_47_2_a13 ER -
%0 Journal Article %A Gongbao Li %A Xiao Luo %A Tao Yang %T Normalized solutions to a class of Kirchhoff equations with Sobolev critical exponent %J Annales Fennici Mathematici %D 2022 %P 895-925 %V 47 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.54330/afm.120247/ %R 10.54330/afm.120247 %G en %F AFM_2022_47_2_a13
Gongbao Li; Xiao Luo; Tao Yang. Normalized solutions to a class of Kirchhoff equations with Sobolev critical exponent. Annales Fennici Mathematici, Tome 47 (2022) no. 2, pp. 895-925. doi : 10.54330/afm.120247. http://geodesic.mathdoc.fr/articles/10.54330/afm.120247/
Cité par Sources :