Normalized solutions to a class of Kirchhoff equations with Sobolev critical exponent
Annales Fennici Mathematici, Tome 47 (2022) no. 2, pp. 895-925.

Voir la notice de l'article provenant de la source Journal.fi

In this paper, we consider the existence and asymptotic properties of solutions to the following Kirchhoff equation $- \left(a+b\int_{{\mathbb{R}^3}} {{{\left| {\nabla u} \right|}^2}}\right) \Delta u=\lambda u+ {| u |^{p - 2}}u+\mu {| u |^{q - 2}}u$ in $\mathbb{R}^{3}$ under the normalized constraint $\int_{{\mathbb{R}^3}} {{u}^2}=c^2$, where $a>0$, $b>0$, $c>0$, $2 or $\frac{14}{3}, $\mu>0$ and $\lambda\in\mathbb{R}$ appears as a Lagrange multiplier. In both cases for the range of $p$ and $q$, the Sobolev critical exponent $p=6$ is involved and the corresponding energy functional is unbounded from below on $S_c=\{ u \in H^{1}({\mathbb{R}^3})\colon \int_{{\mathbb{R}^3}} {{u}^2}=c^2 \}$. If $2 and $\frac{14}{3}, we obtain a multiplicity result to the equation. If $2 or $\frac{14}{3}, we get a ground state solution to the equation. Furthermore, we derive several asymptotic results on the obtained normalized solutions. Our results extend the results of Soave (J. Differential Equations 2020 & J. Funct. Anal. 2020), which studied the nonlinear Schrödinger equations with combined nonlinearities, to the Kirchhoff equations. To deal with the special difficulties created by the nonlocal term $({\int_{{\mathbb{R}^3}} {\left| {\nabla u} \right|} ^2}) \Delta u$ appearing in Kirchhoff type equations, we develop a perturbed Pohozaev constraint approach and we find a way to get a clear picture of the profile of the fiber map via careful analysis. In the meantime, we need some subtle energy estimates under the $L^2$-constraint to recover compactness in the Sobolev critical case.  
DOI : 10.54330/afm.120247
Keywords: Kirchhoff equation, Sobolev critical exponent, normalized solutions, asymptotic property, variational methods

Gongbao Li 1 ; Xiao Luo 2 ; Tao Yang 3

1 Central China Normal University, School of Mathematics and Statistics
2 Hefei University of Technology, School of Mathematics
3 Zhejiang Normal University, Department of Mathematics
@article{AFM_2022_47_2_a13,
     author = {Gongbao Li and Xiao Luo and Tao Yang},
     title = {Normalized solutions to a class of {Kirchhoff} equations with {Sobolev} critical exponent},
     journal = {Annales Fennici Mathematici},
     pages = {895--925},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2022},
     doi = {10.54330/afm.120247},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.120247/}
}
TY  - JOUR
AU  - Gongbao Li
AU  - Xiao Luo
AU  - Tao Yang
TI  - Normalized solutions to a class of Kirchhoff equations with Sobolev critical exponent
JO  - Annales Fennici Mathematici
PY  - 2022
SP  - 895
EP  - 925
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.120247/
DO  - 10.54330/afm.120247
LA  - en
ID  - AFM_2022_47_2_a13
ER  - 
%0 Journal Article
%A Gongbao Li
%A Xiao Luo
%A Tao Yang
%T Normalized solutions to a class of Kirchhoff equations with Sobolev critical exponent
%J Annales Fennici Mathematici
%D 2022
%P 895-925
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.120247/
%R 10.54330/afm.120247
%G en
%F AFM_2022_47_2_a13
Gongbao Li; Xiao Luo; Tao Yang. Normalized solutions to a class of Kirchhoff equations with Sobolev critical exponent. Annales Fennici Mathematici, Tome 47 (2022) no. 2, pp. 895-925. doi : 10.54330/afm.120247. http://geodesic.mathdoc.fr/articles/10.54330/afm.120247/

Cité par Sources :