Parabolic rectifiability, tangent planes and tangent measures
Annales Fennici Mathematici, Tome 47 (2022) no. 2, pp. 855-884.

Voir la notice de l'article provenant de la source Journal.fi

We define rectifiability in $\mathbb{R}^{n}\times\mathbb{R}$ with a parabolic metric in terms of $C^1$ graphs and Lipschitz graphs with small Lipschitz constants and we characterize it in terms of approximate tangent planes and tangent measures. We also discuss relations between the parabolic rectifiability and other notions of rectifiability.
DOI : 10.54330/afm.119821
Keywords: Parabolic space, rectifiable set, C^1 graph, Lipschitz graph, tangent measure, Hausdorff measure

Pertti Mattila 1

1 University of Helsinki, Department of Mathematics and Statistics
@article{AFM_2022_47_2_a11,
     author = {Pertti Mattila},
     title = {Parabolic rectifiability, tangent planes and tangent measures},
     journal = {Annales Fennici Mathematici},
     pages = {855--884},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2022},
     doi = {10.54330/afm.119821},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.119821/}
}
TY  - JOUR
AU  - Pertti Mattila
TI  - Parabolic rectifiability, tangent planes and tangent measures
JO  - Annales Fennici Mathematici
PY  - 2022
SP  - 855
EP  - 884
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.119821/
DO  - 10.54330/afm.119821
LA  - en
ID  - AFM_2022_47_2_a11
ER  - 
%0 Journal Article
%A Pertti Mattila
%T Parabolic rectifiability, tangent planes and tangent measures
%J Annales Fennici Mathematici
%D 2022
%P 855-884
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.119821/
%R 10.54330/afm.119821
%G en
%F AFM_2022_47_2_a11
Pertti Mattila. Parabolic rectifiability, tangent planes and tangent measures. Annales Fennici Mathematici, Tome 47 (2022) no. 2, pp. 855-884. doi : 10.54330/afm.119821. http://geodesic.mathdoc.fr/articles/10.54330/afm.119821/

Cité par Sources :