The weak lower density condition and uniform rectifiability
Annales Fennici Mathematici, Tome 47 (2022) no. 2, pp. 791-819.

Voir la notice de l'article provenant de la source Journal.fi

  We show that an Ahlfors $d$-regular set $E$ in $\mathbb{R}^{n}$ is uniformly rectifiable if the set of pairs $(x,r)\in E\times (0,\infty)$ for which there exists $y \in B(x,r)$ and $0 satisfying $\mathbf{H}^{d}_{\infty}(E\cap B(y,t))<(2t)^{d}-\epsilon(2r)^d$ is a Carleson set for every $\epsilon>0$. To prove this, we generalize a result of Schul by proving, if $X$ is a $C$-doubling metric space, $\epsilon,\rho\in (0,1)$, $A>1$, and $X_n$ is a sequence of maximal $2^{-n}$-separated sets in $X$, and $\mathbf{B}=\{B(x,2^{-n})\colon x\in X_{n},n\in \mathbb{N}\}$, then   $\sum \left\{r_{B}^s\colon B\in \mathbf{B}, \frac{\mathbf{H}^s_{\rho r_{B}}(X\cap AB)}{(2r_{AB})^s}>1+\epsilon\right\} \le_{C,A,\epsilon,\rho,s} \mathbf{H}^s(X)$. This is a quantitative version of the classical result that for a metric space $X$ of finite $s$-dimensional Hausdorff measure, the upper $s$-dimensional densities are at most 1 $\mathbf{H}^s$-almost everywhere.  
DOI : 10.54330/afm.119478
Keywords: Uniform rectifiability, uniform measures

Jonas Azzam 1 ; Matthew Hyde 2

1 University of Edinburgh, School of Mathematics
2 University of Warwick, Mathematics Institute
@article{AFM_2022_47_2_a9,
     author = {Jonas Azzam and Matthew Hyde},
     title = {The weak lower density condition and uniform rectifiability},
     journal = {Annales Fennici Mathematici},
     pages = {791--819},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2022},
     doi = {10.54330/afm.119478},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.119478/}
}
TY  - JOUR
AU  - Jonas Azzam
AU  - Matthew Hyde
TI  - The weak lower density condition and uniform rectifiability
JO  - Annales Fennici Mathematici
PY  - 2022
SP  - 791
EP  - 819
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.119478/
DO  - 10.54330/afm.119478
LA  - en
ID  - AFM_2022_47_2_a9
ER  - 
%0 Journal Article
%A Jonas Azzam
%A Matthew Hyde
%T The weak lower density condition and uniform rectifiability
%J Annales Fennici Mathematici
%D 2022
%P 791-819
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.119478/
%R 10.54330/afm.119478
%G en
%F AFM_2022_47_2_a9
Jonas Azzam; Matthew Hyde. The weak lower density condition and uniform rectifiability. Annales Fennici Mathematici, Tome 47 (2022) no. 2, pp. 791-819. doi : 10.54330/afm.119478. http://geodesic.mathdoc.fr/articles/10.54330/afm.119478/

Cité par Sources :