Voir la notice de l'article provenant de la source Journal.fi
, $W^{1, p}(\Omega_\psi)=M^{1,p}(\Omega_\psi)$ if and only if $W^{1, p}(\Omega)=M^{1, p}(\Omega)$.
Zheng Zhu 1
@article{AFM_2022_47_2_a6, author = {Zheng Zhu}, title = {Pointwise inequalities for {Sobolev} functions on generalized cuspidal domains}, journal = {Annales Fennici Mathematici}, pages = {747--757}, publisher = {mathdoc}, volume = {47}, number = {2}, year = {2022}, doi = {10.54330/afm.117881}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.117881/} }
TY - JOUR AU - Zheng Zhu TI - Pointwise inequalities for Sobolev functions on generalized cuspidal domains JO - Annales Fennici Mathematici PY - 2022 SP - 747 EP - 757 VL - 47 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.54330/afm.117881/ DO - 10.54330/afm.117881 LA - en ID - AFM_2022_47_2_a6 ER -
Zheng Zhu. Pointwise inequalities for Sobolev functions on generalized cuspidal domains. Annales Fennici Mathematici, Tome 47 (2022) no. 2, pp. 747-757. doi : 10.54330/afm.117881. http://geodesic.mathdoc.fr/articles/10.54330/afm.117881/
Cité par Sources :