Pointwise inequalities for Sobolev functions on generalized cuspidal domains
Annales Fennici Mathematici, Tome 47 (2022) no. 2, pp. 747-757.

Voir la notice de l'article provenant de la source Journal.fi

Let $\Omega\subset\mathbb{R}^{n-1}$ be a bounded star-shaped domain and $\Omega_\psi$ be an outward cuspidal domain with base domain $\Omega$. We prove that for $1, $W^{1, p}(\Omega_\psi)=M^{1,p}(\Omega_\psi)$ if and only if $W^{1, p}(\Omega)=M^{1, p}(\Omega)$.  
DOI : 10.54330/afm.117881
Keywords: Sobolev functions, cuspidal domains, pointwise inequality

Zheng Zhu 1

1 University of Jyväskylä, Department of Mathematics and Statistics
@article{AFM_2022_47_2_a6,
     author = {Zheng Zhu},
     title = {Pointwise inequalities for {Sobolev} functions on generalized cuspidal domains},
     journal = {Annales Fennici Mathematici},
     pages = {747--757},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2022},
     doi = {10.54330/afm.117881},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.117881/}
}
TY  - JOUR
AU  - Zheng Zhu
TI  - Pointwise inequalities for Sobolev functions on generalized cuspidal domains
JO  - Annales Fennici Mathematici
PY  - 2022
SP  - 747
EP  - 757
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.117881/
DO  - 10.54330/afm.117881
LA  - en
ID  - AFM_2022_47_2_a6
ER  - 
%0 Journal Article
%A Zheng Zhu
%T Pointwise inequalities for Sobolev functions on generalized cuspidal domains
%J Annales Fennici Mathematici
%D 2022
%P 747-757
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.117881/
%R 10.54330/afm.117881
%G en
%F AFM_2022_47_2_a6
Zheng Zhu. Pointwise inequalities for Sobolev functions on generalized cuspidal domains. Annales Fennici Mathematici, Tome 47 (2022) no. 2, pp. 747-757. doi : 10.54330/afm.117881. http://geodesic.mathdoc.fr/articles/10.54330/afm.117881/

Cité par Sources :