Accessible parts of the boundary for domains in metric measure spaces
Annales Fennici Mathematici, Tome 47 (2022) no. 2, pp. 695-706.

Voir la notice de l'article provenant de la source Journal.fi

We prove in the setting of $Q$-Ahlfors regular PI-spaces the following result: if a domain has uniformly large boundary when measured with respect to the $s$-dimensional Hausdorff content, then its visible boundary has large $t$-dimensional Hausdorff content for every $0. The visible boundary is the set of points that can be reached by a John curve from a fixed point $z_{0}\in \Omega$. This generalizes recent results by Koskela-Nandi-Nicolau (from $\mathbb R^2$) and Azzam ($\mathbb R^n$). In particular, our approach shows that the phenomenon is independent of the linear structure of the space.  
DOI : 10.54330/afm.116365
Keywords: Visible boundary, metric measure space, John domain

Ryan Gibara 1 ; Riikka Korte 2

1 University of Cincinnati, Department of Mathematical Sciences
2 Aalto University, Department of Mathematics and Systems Analysis
@article{AFM_2022_47_2_a3,
     author = {Ryan Gibara and Riikka Korte},
     title = {Accessible parts of the boundary for domains in metric  measure spaces},
     journal = {Annales Fennici Mathematici},
     pages = {695--706},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2022},
     doi = {10.54330/afm.116365},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.116365/}
}
TY  - JOUR
AU  - Ryan Gibara
AU  - Riikka Korte
TI  - Accessible parts of the boundary for domains in metric  measure spaces
JO  - Annales Fennici Mathematici
PY  - 2022
SP  - 695
EP  - 706
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.116365/
DO  - 10.54330/afm.116365
LA  - en
ID  - AFM_2022_47_2_a3
ER  - 
%0 Journal Article
%A Ryan Gibara
%A Riikka Korte
%T Accessible parts of the boundary for domains in metric  measure spaces
%J Annales Fennici Mathematici
%D 2022
%P 695-706
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.116365/
%R 10.54330/afm.116365
%G en
%F AFM_2022_47_2_a3
Ryan Gibara; Riikka Korte. Accessible parts of the boundary for domains in metric  measure spaces. Annales Fennici Mathematici, Tome 47 (2022) no. 2, pp. 695-706. doi : 10.54330/afm.116365. http://geodesic.mathdoc.fr/articles/10.54330/afm.116365/

Cité par Sources :