On the Hardy number of comb domains
Annales Fennici Mathematici, Tome 47 (2022) no. 1, pp. 587-601.

Voir la notice de l'article provenant de la source Journal.fi

Let ${H^p}\left( \mathbb{D} \right)$ be the Hardy space of all holomorphic functions on the unit disk $\mathbb{D}$ with exponent $p>0$. If $D\ne \mathbb{C}$ is a simply connected domain and $f$ is the Riemann mapping from $\mathbb{D}$ onto $D$, then the Hardy number of $D$, introduced by Hansen, is the supremum of all $p$ for which $f \in {H^p}\left( \mathbb{D} \right)$. Comb domains are a well-studied class of simply connected domains that, in general, have the form of the entire plane minus an infinite number of vertical rays. In this paper we study the Hardy number of a class of comb domains with the aid of the quasi-hyperbolic distance and we establish a necessary and sufficient condition for the Hardy number of these domains to be equal to infinity. Applying this condition, we derive several results that show how the mutual distances and the distribution of the rays affect the finiteness of the Hardy number. By a result of Burkholder our condition is also necessary and sufficient for all moments of the exit time of Brownian motion from comb domains to be infinite.  
DOI : 10.54330/afm.115480
Keywords: Hardy number, Hardy space, comb domain

Christina Karafyllia 1

1 Stony Brook University, Institute for Mathematical Sciences
@article{AFM_2022_47_1_a29,
     author = {Christina Karafyllia},
     title = {On the {Hardy} number of comb domains},
     journal = {Annales Fennici Mathematici},
     pages = {587--601},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2022},
     doi = {10.54330/afm.115480},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.115480/}
}
TY  - JOUR
AU  - Christina Karafyllia
TI  - On the Hardy number of comb domains
JO  - Annales Fennici Mathematici
PY  - 2022
SP  - 587
EP  - 601
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.115480/
DO  - 10.54330/afm.115480
LA  - en
ID  - AFM_2022_47_1_a29
ER  - 
%0 Journal Article
%A Christina Karafyllia
%T On the Hardy number of comb domains
%J Annales Fennici Mathematici
%D 2022
%P 587-601
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.115480/
%R 10.54330/afm.115480
%G en
%F AFM_2022_47_1_a29
Christina Karafyllia. On the Hardy number of comb domains. Annales Fennici Mathematici, Tome 47 (2022) no. 1, pp. 587-601. doi : 10.54330/afm.115480. http://geodesic.mathdoc.fr/articles/10.54330/afm.115480/

Cité par Sources :