On big pieces approximations of parabolic hypersurfaces
Annales Fennici Mathematici, Tome 47 (2022) no. 1, pp. 533-571.

Voir la notice de l'article provenant de la source Journal.fi

Let $\Sigma$ be a closed subset of $\mathbb{R}^{n+1}$ which is parabolic Ahlfors-David regular and assume that $\Sigma$ satisfies a 2-sided corkscrew condition. Assume, in addition, that $\Sigma$ is either time-forwards Ahlfors-David regular, time-backwards Ahlfors-David regular, or parabolic uniform rectifiable. We then first prove that $\Sigma$ satisfies a weak synchronized two cube condition. Based on this we are able to revisit the argument of Nyström and Strömqvist (2009) and prove that $\Sigma$ contain suniform big pieces of Lip(1,1/2) graphs. When $\Sigma$ is parabolic uniformly rectifiable the construction can be refined and in this case we prove that $\Sigma$ contains uniform big pieces of regular parabolic Lip(1,1/2) graphs. Similar results hold if $\Omega\subset\mathbb{R}^{n+1}$ is a connected component of $\mathbb{R}^{n+1}\setminus\Sigma$ and in this context we also give a parabolic counterpart of the main result of Azzam et al. (2017) by proving that if $\Omega$ is a one-sided parabolic chord arc domain, and if $\Sigma$ is parabolic uniformly rectifiable, then $\Omega$ is in fact a parabolic chord arc domain. Our results give a flexible parabolic version of the classical (elliptic) result of David and Jerison (1990) concerning the existence of uniform big pieces of Lipschitz graphs for sets satisfying a two disc condition.
DOI : 10.54330/afm.115417
Keywords: Parabolic Lipschitz graph, parabolic uniform rectifiability, big pieces, parabolic measure, caloric measure

Simon Bortz 1 ; John Hoffman 2 ; Steve Hofmann 2 ; Jose Luis Luna-Garcia 2 ; Kaj Nyström 3

1 University of Alabama, Department of Mathematics
2 University of Missouri, Department of Mathematics
3 Uppsala University, Department of Mathematics
@article{AFM_2022_47_1_a27,
     author = {Simon Bortz and John Hoffman and Steve Hofmann and Jose Luis Luna-Garcia and Kaj Nystr\"om},
     title = {On big pieces approximations of parabolic hypersurfaces},
     journal = {Annales Fennici Mathematici},
     pages = {533--571},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2022},
     doi = {10.54330/afm.115417},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.115417/}
}
TY  - JOUR
AU  - Simon Bortz
AU  - John Hoffman
AU  - Steve Hofmann
AU  - Jose Luis Luna-Garcia
AU  - Kaj Nyström
TI  - On big pieces approximations of parabolic hypersurfaces
JO  - Annales Fennici Mathematici
PY  - 2022
SP  - 533
EP  - 571
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.115417/
DO  - 10.54330/afm.115417
LA  - en
ID  - AFM_2022_47_1_a27
ER  - 
%0 Journal Article
%A Simon Bortz
%A John Hoffman
%A Steve Hofmann
%A Jose Luis Luna-Garcia
%A Kaj Nyström
%T On big pieces approximations of parabolic hypersurfaces
%J Annales Fennici Mathematici
%D 2022
%P 533-571
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.115417/
%R 10.54330/afm.115417
%G en
%F AFM_2022_47_1_a27
Simon Bortz; John Hoffman; Steve Hofmann; Jose Luis Luna-Garcia; Kaj Nyström. On big pieces approximations of parabolic hypersurfaces. Annales Fennici Mathematici, Tome 47 (2022) no. 1, pp. 533-571. doi : 10.54330/afm.115417. http://geodesic.mathdoc.fr/articles/10.54330/afm.115417/

Cité par Sources :