A proof of Hall's conjecture on length of ray images under starlike mappings of order α
Annales Fennici Mathematici, Tome 47 (2022) no. 1, pp. 335-349.

Voir la notice de l'article provenant de la source Journal.fi

  Assume that $f$ lies in the class of starlike functions of order $\alpha\in[0,1)$, that is, which are regular and univalent for $|z|<1$ and such that Re$\left(\frac{zf'(z)}{f(z)}\right)>\alpha$ for $|z|<1.$ In this paper we show that for each $\alpha\in[0,1)$, the following sharp inequality holds: $|f(re^{i\theta})|^{-1}\int_{0}^{r}|f'(ue^{i\theta})|\,du\leq\frac{\Gamma(\frac{1}{2})\Gamma(2-\alpha)}{\Gamma(\frac{3}{2}-\alpha)}$ for every $r<1$ and $\theta$. This settles the conjecture of Hall (1980) positively.
DOI : 10.54330/afm.113736
Keywords: Ray-image, length of ray-image, starlike and univalent mappings, starlike functions of order α

Peter Hästö 1 ; Saminathan Ponnusamy 2

1 University of Turku, Department of Mathematics and Statistics
2 Indian Institute of Technology Madras, Department of Mathematics
@article{AFM_2022_47_1_a18,
     author = {Peter H\"ast\"o and Saminathan Ponnusamy},
     title = {A proof of {Hall's} conjecture on length of ray images under starlike mappings of order \ensuremath{\alpha}},
     journal = {Annales Fennici Mathematici},
     pages = {335--349},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2022},
     doi = {10.54330/afm.113736},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.113736/}
}
TY  - JOUR
AU  - Peter Hästö
AU  - Saminathan Ponnusamy
TI  - A proof of Hall's conjecture on length of ray images under starlike mappings of order α
JO  - Annales Fennici Mathematici
PY  - 2022
SP  - 335
EP  - 349
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.113736/
DO  - 10.54330/afm.113736
LA  - en
ID  - AFM_2022_47_1_a18
ER  - 
%0 Journal Article
%A Peter Hästö
%A Saminathan Ponnusamy
%T A proof of Hall's conjecture on length of ray images under starlike mappings of order α
%J Annales Fennici Mathematici
%D 2022
%P 335-349
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.113736/
%R 10.54330/afm.113736
%G en
%F AFM_2022_47_1_a18
Peter Hästö; Saminathan Ponnusamy. A proof of Hall's conjecture on length of ray images under starlike mappings of order α. Annales Fennici Mathematici, Tome 47 (2022) no. 1, pp. 335-349. doi : 10.54330/afm.113736. http://geodesic.mathdoc.fr/articles/10.54330/afm.113736/

Cité par Sources :