Weak quasicircles have Lipschitz dimension 1
Annales Fennici Mathematici, Tome 47 (2022) no. 1, pp. 283-303.

Voir la notice de l'article provenant de la source Journal.fi

We prove that the Lipschitz dimension of any bounded turning Jordan circle or arc is equal to 1. Equivalently, the Lipschitz dimension of any weak quasicircle or arc is equal to 1.
DOI : 10.54330/afm.113453
Keywords: Lipschitz dimension, Lipschitz light mappings, quasisymmetric mappings, bi-Lipschitz embeddings

David M. Freeman 1

1 University of Cincinnati Blue Ash College, Department of Mathematics, Physics, and Computer Science
@article{AFM_2022_47_1_a15,
     author = {David M. Freeman},
     title = {Weak quasicircles have {Lipschitz} dimension 1},
     journal = {Annales Fennici Mathematici},
     pages = {283--303},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2022},
     doi = {10.54330/afm.113453},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.113453/}
}
TY  - JOUR
AU  - David M. Freeman
TI  - Weak quasicircles have Lipschitz dimension 1
JO  - Annales Fennici Mathematici
PY  - 2022
SP  - 283
EP  - 303
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.113453/
DO  - 10.54330/afm.113453
LA  - en
ID  - AFM_2022_47_1_a15
ER  - 
%0 Journal Article
%A David M. Freeman
%T Weak quasicircles have Lipschitz dimension 1
%J Annales Fennici Mathematici
%D 2022
%P 283-303
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.113453/
%R 10.54330/afm.113453
%G en
%F AFM_2022_47_1_a15
David M. Freeman. Weak quasicircles have Lipschitz dimension 1. Annales Fennici Mathematici, Tome 47 (2022) no. 1, pp. 283-303. doi : 10.54330/afm.113453. http://geodesic.mathdoc.fr/articles/10.54330/afm.113453/

Cité par Sources :