On logarithmic Hölder continuity of mappings on the boundary
Annales Fennici Mathematici, Tome 47 (2022) no. 1, pp. 251-259.

Voir la notice de l'article provenant de la source Journal.fi

We study mappings satisfying the so-called inverse Poletsky inequality. Under integrability of the corresponding majorant, it is proved that these mappings are logarithmic Hölder continuous in the neighborhood of the boundary points. In particular, the indicated properties hold for homeomorphisms whose inverse satisfy the weighted Poletsky inequality.
DOI : 10.54330/afm.113348
Keywords: Mappings with a finite and bounded distortion, Hölder continuous mappings, boundary behavior

Evgeny Sevost'yanov 1

1 Zhytomyr Ivan Franko State University and Institute of Applied Mathematics and Mechanics of NAS of Ukraine
@article{AFM_2022_47_1_a13,
     author = {Evgeny Sevost'yanov},
     title = {On logarithmic {H\"older} continuity of mappings on the boundary},
     journal = {Annales Fennici Mathematici},
     pages = {251--259},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2022},
     doi = {10.54330/afm.113348},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.113348/}
}
TY  - JOUR
AU  - Evgeny Sevost'yanov
TI  - On logarithmic Hölder continuity of mappings on the boundary
JO  - Annales Fennici Mathematici
PY  - 2022
SP  - 251
EP  - 259
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.113348/
DO  - 10.54330/afm.113348
LA  - en
ID  - AFM_2022_47_1_a13
ER  - 
%0 Journal Article
%A Evgeny Sevost'yanov
%T On logarithmic Hölder continuity of mappings on the boundary
%J Annales Fennici Mathematici
%D 2022
%P 251-259
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.113348/
%R 10.54330/afm.113348
%G en
%F AFM_2022_47_1_a13
Evgeny Sevost'yanov. On logarithmic Hölder continuity of mappings on the boundary. Annales Fennici Mathematici, Tome 47 (2022) no. 1, pp. 251-259. doi : 10.54330/afm.113348. http://geodesic.mathdoc.fr/articles/10.54330/afm.113348/

Cité par Sources :