Sobolev boundedness and continuity for commutators of the local Hardy–Littlewood maximal function
Annales Fennici Mathematici, Tome 47 (2022) no. 1, pp. 203-235.

Voir la notice de l'article provenant de la source Journal.fi

Let $\Omega$ be a subdomain in $\mathbb{R}^n$ and $M_\Omega$ be the local Hardy-Littlewood maximal function. In this paper, we show that both the commutator and the maximal commutator of $M_\Omega$ are bounded and continuous from the first order Sobolev spaces $W^{1,p_1}(\Omega)$ to $W^{1,p}(\Omega)$ provided that $b\in W^{1,p_2}(\Omega)$, $1 and $1/p=1/p_1+1/p_2$. These are done by establishing several new pointwise estimates for the weak derivatives of the above commutators. As applications, the bounds of these operators on the Sobolev space with zero boundary values are obtained.
DOI : 10.54330/afm.113296
Keywords: Commutator, maximal commutator, local Hardy-Littlewood maximal function, Sobolev space, boundedness, continuity

Feng Liu 1 ; Qingying Xue 2 ; Kôzô Yabuta 3

1 Shandong University of Science and Technology, College of Mathematics and System Science
2 Beijing Normal University, School of Mathematical Sciences
3 Kwansei Gakuin University, Research Center for Mathematics and Data Science
@article{AFM_2022_47_1_a11,
     author = {Feng Liu and Qingying Xue and K\^oz\^o Yabuta},
     title = {Sobolev boundedness and continuity for commutators of the local {Hardy{\textendash}Littlewood} maximal function},
     journal = {Annales Fennici Mathematici},
     pages = {203--235},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2022},
     doi = {10.54330/afm.113296},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.113296/}
}
TY  - JOUR
AU  - Feng Liu
AU  - Qingying Xue
AU  - Kôzô Yabuta
TI  - Sobolev boundedness and continuity for commutators of the local Hardy–Littlewood maximal function
JO  - Annales Fennici Mathematici
PY  - 2022
SP  - 203
EP  - 235
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.113296/
DO  - 10.54330/afm.113296
LA  - en
ID  - AFM_2022_47_1_a11
ER  - 
%0 Journal Article
%A Feng Liu
%A Qingying Xue
%A Kôzô Yabuta
%T Sobolev boundedness and continuity for commutators of the local Hardy–Littlewood maximal function
%J Annales Fennici Mathematici
%D 2022
%P 203-235
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.113296/
%R 10.54330/afm.113296
%G en
%F AFM_2022_47_1_a11
Feng Liu; Qingying Xue; Kôzô Yabuta. Sobolev boundedness and continuity for commutators of the local Hardy–Littlewood maximal function. Annales Fennici Mathematici, Tome 47 (2022) no. 1, pp. 203-235. doi : 10.54330/afm.113296. http://geodesic.mathdoc.fr/articles/10.54330/afm.113296/

Cité par Sources :