Baernstein’s star-function, maximum modulus points and a problem of Erdős
Annales Fennici Mathematici, Tome 47 (2022) no. 1, pp. 181-202.

Voir la notice de l'article provenant de la source Journal.fi

  The paper is devoted to the development of Baernstein's method of $T^{*}$-function. We consider the relationship between the number of separated maximum modulus points of a meromorphic function and the $T^{*}$-function. The results of Bergweiler, Bock, Edrei, Goldberg, Heins, Ostrovskii, Petrenko, Wiman are generalized. We also give examples showing that the obtained estimates are sharp.
DOI : 10.54330/afm.112881
Keywords: Entire functions, meromorphic functions, subharmonic functions, defects, deviations, spreads, maximum modulus points, Nevanlinna theory

Ivan I. Marchenko 1

1 University of Szczecin, Institute of Mathematics
@article{AFM_2022_47_1_a10,
     author = {Ivan I. Marchenko},
     title = {Baernstein{\textquoteright}s star-function, maximum modulus points and a problem of {Erd\H{o}s}},
     journal = {Annales Fennici Mathematici},
     pages = {181--202},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2022},
     doi = {10.54330/afm.112881},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.112881/}
}
TY  - JOUR
AU  - Ivan I. Marchenko
TI  - Baernstein’s star-function, maximum modulus points and a problem of Erdős
JO  - Annales Fennici Mathematici
PY  - 2022
SP  - 181
EP  - 202
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.112881/
DO  - 10.54330/afm.112881
LA  - en
ID  - AFM_2022_47_1_a10
ER  - 
%0 Journal Article
%A Ivan I. Marchenko
%T Baernstein’s star-function, maximum modulus points and a problem of Erdős
%J Annales Fennici Mathematici
%D 2022
%P 181-202
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.112881/
%R 10.54330/afm.112881
%G en
%F AFM_2022_47_1_a10
Ivan I. Marchenko. Baernstein’s star-function, maximum modulus points and a problem of Erdős. Annales Fennici Mathematici, Tome 47 (2022) no. 1, pp. 181-202. doi : 10.54330/afm.112881. http://geodesic.mathdoc.fr/articles/10.54330/afm.112881/

Cité par Sources :