Uniformization of metric surfaces using isothermal coordinates
Annales Fennici Mathematici, Tome 47 (2022) no. 1, pp. 155-180.

Voir la notice de l'article provenant de la source Journal.fi

  We establish a uniformization result for metric surfaces – metric spaces that are topological surfaces with locally finite Hausdorff 2-measure. Using the geometric definition of quasiconformality, we show that a metric surface that can be covered by quasiconformal images of Euclidean domains is quasiconformally equivalent to a Riemannian surface. To prove this, we construct an atlas of suitable isothermal coordinates.
DOI : 10.54330/afm.112781
Keywords: Quasiconformal, uniformization, surface, reciprocality, isothermal, approximate metric differential

Toni Ikonen 1

1 University of Jyväskylä, Department of Mathematics and Statistics
@article{AFM_2022_47_1_a9,
     author = {Toni Ikonen},
     title = {Uniformization of metric surfaces using isothermal coordinates},
     journal = {Annales Fennici Mathematici},
     pages = {155--180},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2022},
     doi = {10.54330/afm.112781},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.112781/}
}
TY  - JOUR
AU  - Toni Ikonen
TI  - Uniformization of metric surfaces using isothermal coordinates
JO  - Annales Fennici Mathematici
PY  - 2022
SP  - 155
EP  - 180
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.112781/
DO  - 10.54330/afm.112781
LA  - en
ID  - AFM_2022_47_1_a9
ER  - 
%0 Journal Article
%A Toni Ikonen
%T Uniformization of metric surfaces using isothermal coordinates
%J Annales Fennici Mathematici
%D 2022
%P 155-180
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.112781/
%R 10.54330/afm.112781
%G en
%F AFM_2022_47_1_a9
Toni Ikonen. Uniformization of metric surfaces using isothermal coordinates. Annales Fennici Mathematici, Tome 47 (2022) no. 1, pp. 155-180. doi : 10.54330/afm.112781. http://geodesic.mathdoc.fr/articles/10.54330/afm.112781/

Cité par Sources :