Note on an elementary inequality and its application to the regularity of p-harmonic functions
Annales Fennici Mathematici, Tome 47 (2022) no. 1, pp. 139-153.

Voir la notice de l'article provenant de la source Journal.fi

We study the Sobolev regularity of $p$-harmonic functions. We show that $|Du|^{\frac{p-2+s}{2}}Du$ belongs to the Sobolev space $W^{1,2}_{\operatorname{loc}}$, $s>-1-\frac{p-1}{n-1}$, for any $p$-harmonic function $u$. The proof is based on an elementary inequality.
DOI : 10.54330/afm.112699
Keywords: p-harmonic function, Sobolev regularity, elementary inequality

Saara Sarsa 1

1 University of Helsinki, Department of Mathematics and Statistics
@article{AFM_2022_47_1_a8,
     author = {Saara Sarsa},
     title = {Note on an elementary inequality and its application to the  regularity of p-harmonic functions},
     journal = {Annales Fennici Mathematici},
     pages = {139--153},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2022},
     doi = {10.54330/afm.112699},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.112699/}
}
TY  - JOUR
AU  - Saara Sarsa
TI  - Note on an elementary inequality and its application to the  regularity of p-harmonic functions
JO  - Annales Fennici Mathematici
PY  - 2022
SP  - 139
EP  - 153
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.112699/
DO  - 10.54330/afm.112699
LA  - en
ID  - AFM_2022_47_1_a8
ER  - 
%0 Journal Article
%A Saara Sarsa
%T Note on an elementary inequality and its application to the  regularity of p-harmonic functions
%J Annales Fennici Mathematici
%D 2022
%P 139-153
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.112699/
%R 10.54330/afm.112699
%G en
%F AFM_2022_47_1_a8
Saara Sarsa. Note on an elementary inequality and its application to the  regularity of p-harmonic functions. Annales Fennici Mathematici, Tome 47 (2022) no. 1, pp. 139-153. doi : 10.54330/afm.112699. http://geodesic.mathdoc.fr/articles/10.54330/afm.112699/

Cité par Sources :