Boundary rigidity for Randers metrics
Annales Fennici Mathematici, Tome 47 (2022) no. 1, pp. 89-102.

Voir la notice de l'article provenant de la source Journal.fi

  If a non-reversible Finsler norm is the sum of a reversible Finsler norm and a closed 1-form, then one can uniquely recover the 1-form up to potential fields from the boundary distance data. We also show a boundary rigidity result for Randers metrics where the reversible Finsler norm is induced by a Riemannian metric which is boundary rigid. Our theorems generalize Riemannian boundary rigidity results to some non-reversible Finsler manifolds. We provide an application to seismology where the seismic wave propagates in a moving medium.
DOI : 10.54330/afm.112492
Keywords: Inverse problems, boundary rigidity, travel time tomography

Keijo Mönkkönen 1

1 University of Jyväskylä, Department of Mathematics and Statistics
@article{AFM_2022_47_1_a5,
     author = {Keijo M\"onkk\"onen},
     title = {Boundary rigidity for {Randers} metrics},
     journal = {Annales Fennici Mathematici},
     pages = {89--102},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2022},
     doi = {10.54330/afm.112492},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.112492/}
}
TY  - JOUR
AU  - Keijo Mönkkönen
TI  - Boundary rigidity for Randers metrics
JO  - Annales Fennici Mathematici
PY  - 2022
SP  - 89
EP  - 102
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.112492/
DO  - 10.54330/afm.112492
LA  - en
ID  - AFM_2022_47_1_a5
ER  - 
%0 Journal Article
%A Keijo Mönkkönen
%T Boundary rigidity for Randers metrics
%J Annales Fennici Mathematici
%D 2022
%P 89-102
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.112492/
%R 10.54330/afm.112492
%G en
%F AFM_2022_47_1_a5
Keijo Mönkkönen. Boundary rigidity for Randers metrics. Annales Fennici Mathematici, Tome 47 (2022) no. 1, pp. 89-102. doi : 10.54330/afm.112492. http://geodesic.mathdoc.fr/articles/10.54330/afm.112492/

Cité par Sources :