VMO-Teichmüller space on the real line
Annales Fennici Mathematici, Tome 47 (2022) no. 1, pp. 57-82.

Voir la notice de l'article provenant de la source Journal.fi

An increasing homeomorphism $h$ on the real line $\mathbb{R}$ is said to be strongly symmetric if it can be extended to a quasiconformal homeomorphism of the upper half plane $\mathbb{U}$ onto itself whose Beltrami coefficient $\mu$ induces a vanishing Carleson measure $|\mu(z)|^2/y\,dx\,dy$ on $\mathbb{U}$. We will deal with the class of strongly symmetric homeomorphisms on the real line and its Teichmüller space, which we call the VMO-Teichmüller space. In particular, we will show that if $h$ is strongly symmetric on the real line, then it is strongly quasisymmetric such that $\log h'$ is a VMO function. This improves some classical results of Carleson (1967) and Anderson-Becker-Lesley (1988) on the problem about the local absolute continuity of a quasisymmetric homeomorphism in terms of the Beltrami coefficient of a quasiconformal extension. We will also discuss various models of the VMO-Teichmüller space and endow it with a complex Banach manifold structure via the standard Bers embedding.  
DOI : 10.54330/afm.112456
Keywords: Universal Teichmüller space, quasiconformal mapping, quasisymmetric homeomorphism, Beltrami coefficient, strongly symmetric homeomorphism, Carleson measure, vanishing Carleson measure, BMOA, VMOA

Yuliang Shen 1

1 Soochow University, Department of Mathematics
@article{AFM_2022_47_1_a3,
     author = {Yuliang Shen},
     title = {VMO-Teichm\"uller space on the real line},
     journal = {Annales Fennici Mathematici},
     pages = {57--82},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2022},
     doi = {10.54330/afm.112456},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.112456/}
}
TY  - JOUR
AU  - Yuliang Shen
TI  - VMO-Teichmüller space on the real line
JO  - Annales Fennici Mathematici
PY  - 2022
SP  - 57
EP  - 82
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.112456/
DO  - 10.54330/afm.112456
LA  - en
ID  - AFM_2022_47_1_a3
ER  - 
%0 Journal Article
%A Yuliang Shen
%T VMO-Teichmüller space on the real line
%J Annales Fennici Mathematici
%D 2022
%P 57-82
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.112456/
%R 10.54330/afm.112456
%G en
%F AFM_2022_47_1_a3
Yuliang Shen. VMO-Teichmüller space on the real line. Annales Fennici Mathematici, Tome 47 (2022) no. 1, pp. 57-82. doi : 10.54330/afm.112456. http://geodesic.mathdoc.fr/articles/10.54330/afm.112456/

Cité par Sources :