Orbifold Jacobian algebras for invertible polynomials
Journal of Singularities, Tome 26 (2023), pp. 92-127

Voir la notice de l'article provenant de la source Journal of Singularities website

An important invariant of a polynomial f is its Jacobian algebra defined by its partial derivatives. Let f be invariant with respect to the action of a finite group of diagonal symmetries G. We axiomatically define an orbifold Jacobian Z/2Z-graded algebra for the pair (f,G) and show its existence and uniqueness in the case, when f is an invertible polynomial. In case when f defines an ADE singularity, we illustrate its geometric meaning.
@article{10_5427_jsing_2023_26f,
     author = {Alexey Basalaev and Atsushi Takahashi, and Elisabeth Werner},
     title = {Orbifold {Jacobian} algebras for invertible polynomials},
     journal = {Journal of Singularities},
     pages = {92--127},
     publisher = {mathdoc},
     volume = {26},
     year = {2023},
     doi = {10.5427/jsing.2023.26f},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2023.26f/}
}
TY  - JOUR
AU  - Alexey Basalaev
AU  - Atsushi Takahashi,
AU  - Elisabeth Werner
TI  - Orbifold Jacobian algebras for invertible polynomials
JO  - Journal of Singularities
PY  - 2023
SP  - 92
EP  - 127
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2023.26f/
DO  - 10.5427/jsing.2023.26f
ID  - 10_5427_jsing_2023_26f
ER  - 
%0 Journal Article
%A Alexey Basalaev
%A Atsushi Takahashi,
%A Elisabeth Werner
%T Orbifold Jacobian algebras for invertible polynomials
%J Journal of Singularities
%D 2023
%P 92-127
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2023.26f/
%R 10.5427/jsing.2023.26f
%F 10_5427_jsing_2023_26f
Alexey Basalaev; Atsushi Takahashi,; Elisabeth Werner. Orbifold Jacobian algebras for invertible polynomials. Journal of Singularities, Tome 26 (2023), pp. 92-127. doi: 10.5427/jsing.2023.26f

Cité par Sources :