Round fold maps of n-dimensional manifolds into (n-1)-dimensional Euclidean space
    
    
  
  
  
      
      
      
        
Journal of Singularities, Tome 26 (2023), pp. 1-12
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Journal of Singularities website
            
              We determine those smooth closed n-dimensional manifolds with n greater than or equal to 4 which admit round fold maps into (n-1)-dimensional Euclidean space; i.e. fold maps whose critical value sets consist of disjoint spheres of dimension n-2 isotopic to concentric spheres. We also classify such round fold maps up to a certain natural equivalence relation.
            
            
            
          
        
      @article{10_5427_jsing_2023_26a,
     author = {Naoki Kitazawa and Osamu Saeki},
     title = {Round fold maps of n-dimensional manifolds into (n-1)-dimensional {Euclidean} space},
     journal = {Journal of Singularities},
     pages = {1--12},
     publisher = {mathdoc},
     volume = {26},
     year = {2023},
     doi = {10.5427/jsing.2023.26a},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2023.26a/}
}
                      
                      
                    TY - JOUR AU - Naoki Kitazawa AU - Osamu Saeki TI - Round fold maps of n-dimensional manifolds into (n-1)-dimensional Euclidean space JO - Journal of Singularities PY - 2023 SP - 1 EP - 12 VL - 26 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2023.26a/ DO - 10.5427/jsing.2023.26a ID - 10_5427_jsing_2023_26a ER -
%0 Journal Article %A Naoki Kitazawa %A Osamu Saeki %T Round fold maps of n-dimensional manifolds into (n-1)-dimensional Euclidean space %J Journal of Singularities %D 2023 %P 1-12 %V 26 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2023.26a/ %R 10.5427/jsing.2023.26a %F 10_5427_jsing_2023_26a
Naoki Kitazawa; Osamu Saeki. Round fold maps of n-dimensional manifolds into (n-1)-dimensional Euclidean space. Journal of Singularities, Tome 26 (2023), pp. 1-12. doi: 10.5427/jsing.2023.26a
Cité par Sources :