Round fold maps of n-dimensional manifolds into (n-1)-dimensional Euclidean space
Journal of Singularities, Tome 26 (2023), pp. 1-12

Voir la notice de l'article provenant de la source Journal of Singularities website

We determine those smooth closed n-dimensional manifolds with n greater than or equal to 4 which admit round fold maps into (n-1)-dimensional Euclidean space; i.e. fold maps whose critical value sets consist of disjoint spheres of dimension n-2 isotopic to concentric spheres. We also classify such round fold maps up to a certain natural equivalence relation.
DOI : 10.5427/jsing.2023.26a
Classification : 57R45, 58K30
@article{10_5427_jsing_2023_26a,
     author = {Naoki Kitazawa and Osamu Saeki},
     title = {Round fold maps of n-dimensional manifolds into (n-1)-dimensional {Euclidean} space},
     journal = {Journal of Singularities},
     pages = {1--12},
     publisher = {mathdoc},
     volume = {26},
     year = {2023},
     doi = {10.5427/jsing.2023.26a},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2023.26a/}
}
TY  - JOUR
AU  - Naoki Kitazawa
AU  - Osamu Saeki
TI  - Round fold maps of n-dimensional manifolds into (n-1)-dimensional Euclidean space
JO  - Journal of Singularities
PY  - 2023
SP  - 1
EP  - 12
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2023.26a/
DO  - 10.5427/jsing.2023.26a
ID  - 10_5427_jsing_2023_26a
ER  - 
%0 Journal Article
%A Naoki Kitazawa
%A Osamu Saeki
%T Round fold maps of n-dimensional manifolds into (n-1)-dimensional Euclidean space
%J Journal of Singularities
%D 2023
%P 1-12
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2023.26a/
%R 10.5427/jsing.2023.26a
%F 10_5427_jsing_2023_26a
Naoki Kitazawa; Osamu Saeki. Round fold maps of n-dimensional manifolds into (n-1)-dimensional Euclidean space. Journal of Singularities, Tome 26 (2023), pp. 1-12. doi: 10.5427/jsing.2023.26a

Cité par Sources :